References
- Benner SA. Paradoxes in the origin of life. Origins of Life and Evolution of Biospheres. 2014;44: 339–343. doi: 10.1007/s11084-014-9379-0
- Lee H-E, Russell M, Nakamura R. Water chemistry at the nanoscale: clues for resolving the “water paradox” underlying the emergence of life. ChemistryEurope. 2024;2: e202400038. (7pp). doi: 10.1002/ceur.202400038
- Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct. 2012;7: 23. doi: 10.1186/1745-6150-7-23
- Ross DS, Deamer D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life (Basel, Switzerland). 2016;6: 28. (12pp). doi: 10.3390/life6030028
- Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nature Reviews Chemistry. 2024;8: 817–832. doi: 10.1038/s41570-024-00648-5
- Ianeselli A, Salditt A, Mast C, Ercolano B, Kufner CL, Scheu B, et al. Physical non-equilibria for prebiotic nucleic acid chemistry. Nature Reviews Physics. 2023;5: 185–195. doi: 10.1038/s42254-022-00550-3
- Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proceedings of the National Academy of Sciences of the United States of America. 2024;121: e2412784121. doi: 10.1073/pnas.2412784121
- Eigen M, Schuster P. The hypercycle. Die Naturwissenschaften. 1978;65: 341–369. doi: 10.1007/bf00439699
- Riggi VS, Bruce Watson E, Steele A, Rogers KL. Mineral-mediated oligoribonucleotide condensation: broadening the scope of prebiotic possibilities on the early earth. Life (Basel, Switzerland). 2023;13: 1899. (15pp). doi: 10.3390/life13091899
- Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Letters. 2023;597: 2879–2896. doi: 10.1002/1873-3468.14766
- Miller SL. A production of amino acids under possible primitive earth conditions. Science (New York, N.Y.). 1953;117: 528–529. doi: 10.1126/science.117.3046.528
- Okamoto R, Haraguchi T, Nomura K, Maki Y, Izumi M, Kajihara Y. Regioselective α-peptide bond formation through the oxidation of amino thioacids. Biochemistry. 2019;58: 1672–1678. doi: 10.1021/acs.biochem.8b01239
- Du X, Cui J, Han Y, Li F, Liang H, Jin J, et al. Effects of monomer purity on AA-BB polycondensation: a Monte Carlo study. Polymer Bulletin. 2024;81: 6423–6436. doi: 10.1007/s00289-023-05015-w
- Orgel LE. The origins of life: molecules and natural selection. London: Chapman & Hall; 1973.
- Rich A. On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry: Albert Szent-Györgyi dedicatory volume. (Cambridge, Mass.) is an imprint of Elsevier: Academic Press; 1962. p.103–125.
- Woese C. The genetic code: the molecular basis for genetic expression. London: Harper & Row; 1967.
- Orgel LE. Evolution of the genetic apparatus. Journal of Molecular Biology. 1968;38: 381–393. doi: 10.1016/0022-2836(68)90393-8
- Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, et al. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife. 2024;12: RP90316. (27pp). doi: 10.7554/eLife.90316.3
- Benner SA, Kim H-J, Carrigan MA. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Accounts of Chemical Research. 2012;45: 2025–2034. doi: 10.1021/ar200332w
- Wang C, Liu H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Scientific Reports. 2022;12: 7259. (11pp). doi: 10.1038/s41598-022-11339-w
- Kahne D, Still WC. Hydrolysis of a peptide bond in neutral water. Journal of the American Chemical Society. 1988;10: 7529–7534. doi: 10.1021/ja00230a041
- Williams DA, Hartquist TW. The cosmic-chemical bond. London: Royal Society of Chemistry; 2013. doi: 10.1039/9781839169144
- Howard KT, Bailey MJ, Berhanu D, Bland PA, Cressey G, Howard LE, et al. Biomass preservation in distal impact melt ejecta. Nature Geoscience. 2013;6: 1018–1022. doi: 10.1038/ngeo1996
- Benner SA, Bell EA, Biondi E, Brasser R, Carell T, Kim H-J, et al. When did life likely emerge on earth in an RNA-first process? ChemSystemsChem. 2020;2: e1900035. doi: 10.1002/syst.201900035
- Cronin JR, Pizzarello S. Amino acid enantiomer excesses in meteorites: origin and significance. Advances in Space Research. 1999;23: 293–299. doi: 10.1016/S0273-1177(99)00050-2
- Parker MC, Jeynes C. A relativistic entropic Hamiltonian–Lagrangian approach to the entropy production of spiral galaxies in hyperbolic spacetime. Universe. 2021;7: 325. (15pp). doi: 10.3390/universe7090325
- Parker MC, Jeynes C. Maximum entropy (most likely) double helical and double logarithmic spiral trajectories in space-time. Scientific Reports. 2019;9: 10779. doi: 10.1038/s41598-019-46765-w
- Parker MC, Jeynes C. ab initio thermodynamics calculation of beta decay rates. Annalen Der Physik. 2023;535: 2300259. (11pp). doi: 10.1002/andp.202300259
- Auffray C, Nottale L. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Progress in Biophysics and Molecular Biology. 2008;97: 79–114. doi: 10.1016/j.pbiomolbio.2007.09.002
- Parker MC, Jeynes C. A maximum entropy resolution to the wine/water paradox. Entropy (Basel, Switzerland). 2023;25: 1242. (10pp). doi: 10.3390/e25081242
- Parker MC, Jeynes C. Entropic uncertainty principle, partition function and holographic principle derived from Liouville’s theorem. Physics Open. 2021;7: 100068. (11pp). doi: 10.1016/j.physo.2021.100068
- Parker MC, Jeynes C, Catford WN. Halo properties in helium nuclei from the perspective of geometrical thermodynamics. Annalen Der Physik. 2022;534: 2100278. (11pp). doi: 10.1002/andp.202100278
- Parker MC, Jeynes C. Relating a system’s Hamiltonian to its entropy production using a complex-time approach. Entropy. April 2023;25: 629. (19pp). doi: 10.3390/e25040629
- Chatterjee A, Zhang K, Rao Y, Sharma N, Giammar DE, Parker KM. Metal-catalyzed hydrolysis of RNA in aqueous environments. Environmental Science & Technology. 2022;56: 3564–3574. doi: 10.1021/acs.est.1c08468
- Sun Y, Frenkel-Pinter M, Liotta CL, Grover MA. The pH dependent mechanisms of non-enzymatic peptide bond cleavage reactions. Physical Chemistry Chemical Physics. 2019;22: 107–113. doi: 10.1039/c9cp05240b
- Beardslee PC, Dhamdhere G, Jiang J, Ogbonna EC, Presloid CJ, Prorok M, et al. Enzymes & CLP proteases. In: Jez J. (ed.) Encyclopedia of biological chemistry III. 3rd ed., Vol. 3. Oxford: Elsevier; 2021. p.292–306. doi: 10.1016/B978-0-12-819460-7.00156-0
- Bruce Martin R. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers. 1998;45: 351–353. doi: 10.1002/(SICI)1097-0282(19980415)45:5<;351:AID-BIP3>3.0.CO;2-K
- Radzicka A, Wolfenden R. Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. Journal of the American Chemical Society. 1996;118: 6105–6109. doi: 10.1021/ja954077c
- Xu Z, Asakawa S. Release and degradation of dissolved environmental RNAs from zebrafish cells. RNA Biology. 2025;22(1): 1–12. doi: 10.1080/15476286.2025.2486281
- Brigiano FS, Gierada M, Tielens F, Pietrucci F. Mechanism and free-energy landscape of peptide bond formation at the silica−water interface. ACSCatalysis. 2022;12: 2821–2830. doi: 10.1021/acscatal.1c05635
- Forsythe JG, Yu S-S, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angewandte Chemie. 2015;54: 9871–9875. doi: 10.1002/anie.201503792
- Zagrovic B, Adlhart M, Kapral TH. Coding from binding? Molecular interactions at the heart of translation. Annual Review of Biophysics. 2023;52: 69–89. doi: 10.1146/annurev-biophys-090622-102329
- Guo X, Su M. The origin of translation: bridging the nucleotides and peptides. International Journal of Molecular Sciences. 2023;24: 197. (16pp). doi: 10.3390/ijms24010197
- Parker MC, Jeynes C. Fullerene stability by geometrical thermodynamics. ChemistrySelect. 2020;5: 514. doi: 10.1002/slct.201903633
- Parker MC, Jeynes C, Walker SD. A metric for the entropic purpose of a system. Entropy (Basel, Switzerland). 2025;27: 131. (40pp). doi: 10.3390/e27020131