References
- Stryer L. Biochemistry. 2nd ed. San Francisco: WH Freeman and Company; 1981.
- Brändén CI, Tooze J. Introduction to protein structure. 1st ed. Garland Science; 1991. p. 15.
- Fersht A. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. San Francisco: WH Freeman and Company; 1998.
- Liljas A, Liljas L, Ash M-R, Lindblom G, Nissen P, Kjeldgaard M. Textbook of Structural Biology. 2nd ed. Singapore: World Scientific Publishing Company; 2017.
- Linke D. Detergents: an overview. Methods Enzymol. 2009;463:603–617.
- Lin SH, Guidotti G. Purification of membrane proteins. Methods Enzymol. 2009;463:619–629.
- Duquesne K, Sturgis JN. Membrane protein solubilization. Methods Mol Biol. 2010;601:205–217.
- Lieberman RL, Rosenzweig AC. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature. 2005;434(7030):177–182.
- Chang WH, et al. Copper centers in the Cryo-EM structure of particulate methane monooxygenase reveal the catalytic machinery of methane oxidation. J Am Chem Soc. 2021;143(26):9922–9932.
- Zhu Y, et al. Structure and activity of particulate methane monooxygenase arrays in methanotrophs. Nat Commun. 2022;13(1):5221.
- Wang W, Liang AD, Lippard SJ. Coupling oxygen consumption with hydrocarbon oxidation in bacterial multicomponent monooxygenases. Acc Chem Res. 2015;48(9):2632–2639.
- DiSpirito AA, Gulledge J, Shiemke AK, et al. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation. 1991;2:151–164.
- Choi DW, et al. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol. 2003;185(19):5755–5764.
- Balasubramanian R, et al. Oxidation of methane by a biological dicopper centre. Nature. 2010;465(7294):115–119.
- Sirajuddin S, et al. Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem. 2014;289(31):21782–21794.
- Martinho M, et al. Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: Evidence for a diiron center. J Am Chem Soc. 2007;129:15783–15785.
- Yu SS-F, et al. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol. 2003;185:5915–5924.
- Vinothkumar KR, Henderson R. Structures of membrane proteins. Q Rev Biophys. 2010;43:65–158.
- Zhang S, Egli M. Hiding in plain sight: three chemically distinct α-helix types. Q Rev Biophys. 2022;55:e7.
- Zhang S, et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc Natl Acad Sci USA. 2018;115(37):E8652–E8659. PMID: 30154163.
- Qing R, et al. QTY code designed thermostable and water-soluble chimeric chemokine receptors with tunable ligand-binding activities. Proc Natl Acad Sci USA. 2019;116(51):25668–25676. PMID: 31776256.
- Hao SL, et al. QTY code-designed water-soluble Fc-fusion cytokine receptors bind to their respective ligands. QRB Discovery. 2020;1:e4.
- Tegler LT, et al. G protein-coupled receptor CXCR4 designed by the QTY code becomes more hydrophilic and retains cell-signaling activity. Sci Rep. 2020;10:21371.
- Qing R, et al. Scalable biomimetic sensing system with membrane receptor dual-monolayer probe and graphene transistor arrays. Sci Adv. 2023;9(29):eadf1402. PMID: 37478177.
- Skuhersky M, et al. Comparing native crystal structures and AlphaFold2 predicted water-soluble G protein-coupled receptor QTY variants. Life. 2021;11(12):10.3390/life11121285.
- Smorodina E, et al. Comparing 2 crystal structures and 12 AlphaFold2 predicted human membrane glucose transporters and their water-soluble QTY variants. QRB Discovery. 2022;3:e5.
- Smorodina E, et al. Structural informatic study of determined and AlphaFold2 predicted molecular structures of 13 human solute carrier transporters and their water-soluble QTY variants. Sci Rep. 2022;12:20103.
- Pan E, Smorodina E, Zhang S. Structural bioinformatics studies of six human ABC transporters and their AlphaFold2 predicted water-soluble QTY variants. QRB Discovery. 2024;4:e2. DOI: 10.1017/qrd.2024.2.
- Karagöl A, Karagöl T, Smorodina E, Zhang S. Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, V->T, F->Y and Q->L, T->V, Y->F. PLoS ONE. 2024;19(4):e0289644.
- Karagöl A, Karagöl T, Zhang S. Structural bioinformatics studies of serotonin, dopamine and norepinephrine transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS ONE. 2024;19(3):e0300340. PMID: 38517879.
- Li M, et al. Design of a water-soluble transmembrane receptor kinase with intact molecular function by QTY code. Nat Commun. 2024;15(1):4293. PMID: 38858360.
- Finkelstein J. Methanol maker. Nature. 2005;434:151. DOI: 10.1038/434151b.
- Yano N, et al. The Mg2+-containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle. J Biol Chem. 2016;291:23882–23894.
- Zong S, et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 2018;28:1026–1034.
- Gao X, et al. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry. 2003;42(30):9067–9080.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589.
- Jumper J, Hassabis D. Protein structure predictions to atomic accuracy with AlphaFold. Nat Methods. 2022;19(1):11–12.
- Abramson J, Adler J, Dunger J, Evans R, Green T, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500.
- Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38:151–159. DOI: 10.1016/j.tibs.2013.01.003.