Have a personal or library account? Click to login
The Complexity of Glycan Structures, Functions, and Origins Cover
Open Access
|Dec 2024

References

  1. Cummings RD. Evolution and diversity of glycomolecules from unicellular organisms to humans. BioCosmos. 2024;1: 1–35. doi: 10.2478/biocosmos-2024-0001
  2. Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons G-J, Darvill A, Hart G, et al. Transforming glycoscience: a roadmap for the future. Vol. 2012. Washington, DC: The National Academy Press; 2012. p.191.
  3. Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.1–20.
  4. Zoldos V, Horvat T, Lauc G. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies. Current Opinion in Chemical Biology. 2013;17(1): 34–40. doi: 10.1016/j.cbpa.2012.12.007
  5. Lauc G, Vojta A, Zoldos V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochimica et Biophysica Acta. 2014;1840(1): 65–70. doi: 10.1016/j.bbagen.2013.08.017
  6. Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.615–630.
  7. Kristic J, Lauc G. Ubiquitous importance of protein glycosylation. Methods in Molecular Biology (Clifton, NJ). 2017;1503: 1–12. doi: 10.1007/978-1-4939-6493-2_1
  8. Lauc G, Zoldos V. Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale. Medical Hypotheses. 2009;73: 510–512. doi: 10.1016/j.mehy.2009.03.059
  9. Freeze HH, Kinoshita T, Varki A. Chapter 46 glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 521–526.
  10. Varki A, Kannagi R, Toole B, Stanley P. Chapter 47 glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 597–609.
  11. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology. 2007;25: 21–50. doi: 10.1146/annurev.immunol.25.022106.141702
  12. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annual Review of Biochemistry. 1988;57: 785–838. doi: 10.1146/annurev.bi.57.070188.004033
  13. Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH. Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis. ACS Chemical Biology. 2007;2(10): 685–691. doi: 10.1021/cb700178s
  14. Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6): 759–767. doi: 10.1093/glycob/4.6.759
  15. Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.103–116.
  16. Stanley P, Wuhrer M, Lauc G, Stowell SR, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.165–184.
  17. Lauc G, Zoldos V. Protein glycosylation – an evolutionary crossroad between genes and environment. Molecular bioSystems. 2010;6(12): 2373–2379. doi: 10.1039/c0mb00067a
  18. Wang TT. IgG Fc glycosylation in human immunity. Current Topics in Microbiology and Immunology. 2019;423: 63–75. doi: 10.1007/82_2019_152
  19. Kristic J, Lauc G, Pezer M. Immunoglobulin G glycans – biomarkers and molecular effectors of aging. Clinica Chimica Acta. 2022;535: 30–45. doi: 10.1016/j.cca.2022.08.006
  20. André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: getting familiar with translators of the sugar code. Molecules (Basel, Switzerland). 2015;20(2): 1788–1823. doi: 10.3390/molecules20021788
  21. Rudiger H, Gabius HJ. The biochemical basis and coding capacity of the sugar code. In: Gabius HJ. (ed.) The sugar code: fundamentals of glycosciences. Weinheim: Wiley-Blackwell; 2009. p. 3–14.
  22. Lombard J. Early evolution of polyisoprenol biosynthesis and the origin of cell walls. PeerJ. 2016;4: e2626. doi: 10.7717/peerj.2626
  23. Eichler J, Guan Z. Lipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylation. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids. 2017;1862(6): 589–599. doi: 10.1016/j.bbalip.2017.03.005
  24. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014;42(Database issue): D490–D495. doi: 10.1093/nar/gkt1178
  25. Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, et al. ER chaperones use a protein folding and quality control glycocode. Molecular Cell. 2023;83(24): 4524–4537.e5. doi: 10.1016/j.molcel.2023.11.006
  26. Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Letters. 2015;589(22): 3379–3387. doi: 10.1016/j.febslet.2015.07.021
  27. Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.529–538.
  28. Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell. 2021;184(9): 2412–2429.e16. doi: 10.1016/j.cell.2021.03.035
  29. Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.43–52.
  30. Connerly PL. How do proteins move through the Golgi apparatus? Nature Education. 2010;3(9): 60–66. doi: www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/
  31. D’Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Frontiers in Cell and Developmental Biology. 2019;7: 118. doi: 10.3389/fcell.2019.00118
  32. Blackburn JB, D’Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Letters. 2019;593(17): 2466–2487. doi: 10.1002/1873-3468.13570
  33. Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, et al. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biological Reviews of the Cambridge Philosophical Society. 2022;97(2): 732–748. doi: 10.1111/brv.12820
  34. Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.79–92.
  35. Taylor ME, Drickamer K, Imberty A, van Kooyk Y, Schnaar RL, Etzler ME, et al. Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.375–386.
  36. Bournazos S, Ravetch JV. Fcgamma receptor pathways during active and passive immunization. Immunological Reviews. 2015;268(1): 88–103. doi: 10.1111/imr.12343
  37. Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Advances in Experimental Medicine and Biology. 2011;780: 113–124. doi: 10.1007/978-1-4419-5632-3_10
  38. Bournazos S, Ravetch JV. Diversification of IgG effector functions. International Immunology. 2017;29(7): 303–310. doi: 10.1093/intimm/dxx025
  39. Bournazos S, Ravetch JV. Fcgamma receptor function and the design of vaccination strategies. Immunity. 2017;47(2): 224–233. doi: 10.1016/j.immuni.2017.07.009
  40. Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochimica et Biophysica Acta. 2006;1760(4): 693–700. doi: 10.1016/j.bbagen.2005.10.002
  41. Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology. 2020;30(4): 214–225. doi: 10.1093/glycob/cwz068
  42. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24): 9868–9872. doi: 10.1073/pnas.1307864110
  43. Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target? Journal of Autoimmunity. 2019;96: 14–23. doi: 10.1016/j.jaut.2018.10.006
  44. Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. Journal of Autoimmunity. 2015;57: 1–13. doi: 10.1016/j.jaut.2014.12.002
  45. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science (New York, NY). 2002;296(5566): 298–300. doi: 10.1126/science.1068883
  46. Parekh RB, Tse AGD, Dwek RA, Williams AF, Rademacher TW. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal. 1987;6: 1233–1244. doi: 10.1002/j.1460-2075.1987.tb02359.x
  47. Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology. 2022;17(11): 2993–3012. doi: 10.1021/acschembio.1c00689
  48. Zeng X, Novotny MV, Clemmer DE, Trinidad JC. A graphical representation of glycan heterogeneity. Glycobiology. 2022;32(3): 201–207. doi: 10.1093/glycob/cwab116
  49. Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. European Journal of Biochemistry/FEBS. 1993;218(1): 1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x
  50. Sharon N, Lis H. Carbohydrates in cell recognition. Scientific American. 1993;268(1): 82–89. doi: 10.1038/scientificamerican0193-82
  51. Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology. 2018;333: 46–57. doi: 10.1016/j.cellimm.2018.03.007
  52. Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, et al. Glycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune response. Immunology. 2023;168(2): 217–232. doi: 10.1111/imm.13494
  53. Kong Y, Chen H, Chen M, Li Y, Li J, Liu Q, et al. Abnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosis. Frontiers in Oncology. 2022;12: 855952. doi: 10.3389/fonc.2022.855952
  54. Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, et al. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Advances. 2019;9(38): 22064–22073. doi: 10.1039/C9RA04341A
  55. Liu L, Li D, Shu J, Wang L, Zhang F, Zhang C, et al. Protein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancer. Frontiers in Oncology. 2020;10: 568433. doi: 10.3389/fonc.2020.568433
  56. Yang G, Tan Z, Lu W, Guo J, Yu H, Yu J, et al. Quantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategy. Journal of Proteome Research. 2015;14(2): 639–653. doi: 10.1021/pr5006026
  57. Yang J, Liu X, Shu J, Hou Y, Chen M, Yu H, et al. Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconjugate Journal. 2020;37(3): 373–394. doi: 10.1007/s10719-020-09910-6
  58. Yu H, Li X, Chen M, Zhang F, Liu X, Yu J, et al. Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma. Frontiers in Oncology. 2019;9: 636. doi: 10.3389/fonc.2019.00636
  59. Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. Journal of Diabetes Research. 2017;2017: 5728087. doi: 10.1155/2017/5728087
  60. Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2022;24(10): 1865–1880. doi: 10.1007/s12094-022-02858-z
  61. Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Advances in Cancer Research. 2023;157: 123–155. doi: 10.1016/bs.acr.2022.07.003
  62. Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. The Journal of Experimental Medicine. 2022;219(6): e20211505. doi: 10.1084/jem.20211505
  63. Godefa TM, Derks S, Thijssen V. Galectins in esophageal cancer: current knowledge and future perspectives. Cancers (Basel). 2022;14(23): 5790. doi: 10.3390/cancers14235790
  64. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022.
  65. Neelamegham S, Mahal LK. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Current Opinion in Structural Biology. 2016;40: 145–152. doi: 10.1016/j.sbi.2016.09.013
  66. Dall’Olio F, Trinchera M. Epigenetic bases of aberrant glycosylation in cancer. International Journal of Molecular Sciences. 2017;18(5): 998. doi: 10.3390/ijms18050998
  67. Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein Journal of Organic Chemistry. 2021;17: 1712–1724. doi: 10.3762/bjoc.17.119
  68. Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59(34): 3098–3110. doi: 10.1021/acs.biochem.9b00784
  69. Halfon MS. Perspectives on gene regulatory network evolution. Trends in Genetics: TIG. 2017;33(7): 436–447. doi: 10.1016/j.tig.2017.04.005
  70. Schember I, Halfon MS. Common themes and future challenges in understanding gene regulatory network evolution. Cells. 2022;11(3): 510. doi: 10.3390/cells11030510
  71. Frankel N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2012;241(12): 1857–1866. doi: 10.1002/dvdy.23871
  72. Davidson EH. Evolutionary bioscience as regulatory systems biology. Developmental Biology. 2011;357(1): 35–40. doi: 10.1016/j.ydbio.2011.02.004
  73. Agrawal P, Kurcon T, Pilobello KT, Rakus JF, Koppolu S, Liu Z, et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(11): 4338–4343. doi: 10.1073/pnas.1321524111
  74. Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Central Science. 2022;8(11): 1527–1536. doi: 10.1021/acscentsci.2c00748
  75. Groth T, Diehl AD, Gunawan R, Neelamegham S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics. 2022;38(24): 5413–5420. doi: 10.1093/bioinformatics/btac704
  76. Kelkar A, Groth T, Neelamegham S. Forward genetic screens of human glycosylation pathways using the GlycoGene CRISPR library. Current Protocols. 2022;2(4): e402. doi: 10.1002/cpz1.402
  77. Stewart N, Wisnovsky S. Bridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylation. Frontiers in Molecular Biosciences. 2022;9: 934584. doi: 10.3389/fmolb.2022.934584
  78. Lisacek F, Tiemeyer M, Mazumder R, Aoki-Kinoshita KF. Worldwide glycoscience informatics infrastructure: the GlySpace alliance. Journal of the American Chemical Society Au. 2023;3(1): 4–12. doi: 10.1021/jacsau.2c00477
  79. Bojar D, Lisacek F. Glycoinformatics in the artificial intelligence era. Chemical Reviews. 2022;122(20): 15971–15988. doi: 10.1021/acs.chemrev.2c00110
  80. Hayes C, Daponte V, Mariethoz J, Lisacek F. This is GlycoQL. Bioinformatics (Oxford, England). 2022;38(Suppl_2): ii162–ii167. doi: 10.1093/bioinformatics/btac500
  81. Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An interactive view of glycosylation. Methods in Molecular Biology (Clifton, NJ). 2022;2370: 41–65. doi: 10.1007/978-1-0716-1685-7_3
  82. Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p. 705–718.
  83. Kasper BT, Koppolu S, Mahal LK. Insights into miRNA regulation of the human glycome. Biochemical and Biophysical Research Communications. 2014;445(4): 774–779. doi: 10.1016/j.bbrc.2014.01.034
  84. Indellicato R, Trinchera M. Epigenetic regulation of glycosylation in cancer and other diseases. International Journal of Molecular Sciences. 2021;22(6): 2980. doi: 10.3390/ijms22062980
  85. Indellicato R, Trinchera M. Epigenetic regulation of glycosylation. Advances in Experimental Medicine and Biology. 2021;1325: 173–186. doi: 10.1007/978-3-030-70115-4_8
  86. Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. American Journal of Physiology. Cell Physiology. 2022;322(5): C849–C864. doi: 10.1152/ajpcell.00085.2022
  87. Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145. doi: 10.3389/fgene.2014.00145
  88. Stambuk T, Klasic M, Zoldos V, Lauc G. N-glycans as functional effectors of genetic and epigenetic disease risk. Molecular Aspects of Medicine. 2021;79: 100891. doi: 10.1016/j.mam.2020.100891
  89. Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Current Opinion in Chemical Biology. 2019;53: 16–24. doi: 10.1016/j.cbpa.2019.05.032
  90. Valguarnera E, Kinsella RL, Feldman MF. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. Journal of Molecular Biology. 2016;428(16): 3206–3220. doi: 10.1016/j.jmb.2016.04.013
  91. Nothaft H, Szymanski CM. Bacterial protein N-glycosylation: new perspectives and applications. Journal of Biological Chemistry. 2013;288(10): 6912–6920. doi: 10.1074/jbc.R112.417857
  92. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science (New York, NY). 2002;298(5599): 1790–1793. doi: 10.1126/science.298.5599.1790
  93. Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biology Direct. 2016;11: 36. doi: 10.1186/s13062-016-0137-2
  94. Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.297–306.
  95. Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Molecular Microbiology. 2020;114(5): 735–741. doi: 10.1111/mmi.14569
  96. Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018;555(7696): 328–333. doi: 10.1038/nature25755
  97. Wang P, Wang H, Gai J, Tian X, Zhang X, Lv Y, et al. Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Scientific Reports. 2017;7: 40301. doi: 10.1038/srep40301
  98. Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14: 117. doi: 10.1186/1471-2164-14-117
  99. Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Letters. 2022;596(18): 2345–2363. doi: 10.1002/1873-3468.14457
  100. Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science (New York, NY). 2006;311(5762): 796–800. doi: 10.1126/science.1113832
  101. Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution. 2010;314(3): 182–186. doi: 10.1002/jez.b.21329
  102. Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144(6): 970–985. doi: 10.1016/j.cell.2011.02.017
  103. Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics. 2009;10(2): 141–148. doi: 10.1038/nrg2499
  104. Frankel N, Wang S, Stern DL. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(51): 20975–20979. doi: 10.1073/pnas.1207715109
  105. Hynes RO. The evolution of metazoan extracellular matrix. The Journal of Cell Biology. 2012;196(6): 671–679. doi: 10.1083/jcb.201109041
  106. Meyer SM. Darwin’s Doubt: the explosive origin of animal life and the case for intelligent design. New York, NY: Harper Collins; 2013. p.498.
  107. Noble D. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology. 2011;589(Pt 5): 1007–1015. doi: 10.1113/jphysiol.2010.201384
  108. Noble D, Noble R. Origins and demise of selfish gene theory. Theoretical Biology Forum. 2022;115(1–2): 29–43. doi: 10.19272/202211402003
  109. Wells J. Membrane patterns carry ontogenetic information that is specified indpendently of DNA. BIO-Complexity. 2014;2014(2): 1–28. doi: 10.5048/BIO-C.2014.2
  110. Vane-Wright RI, Corning PA. Teleonomy in living systems: an overview. Biological Journal of the Linnean Society. 2023;139: 341–356. doi: 10.1093/biolinnean/blad037
  111. Babcock G, McShea DW. Resolving teleology’s false dilemma. Biological Journal of the Linnean Society. 2023;139(4): 415–432. doi: 10.1093/biolinnean/blac058
  112. Gontier N. Teleonomy as a problem of self-causation. Biological Journal of the Linnean Society. 2023;139(4): 388–414. doi: 10.1093/biolinnean/blac111
  113. Heylighen F. The meaning and origin of goal-directedness: a dynamical systems perspective. Biological Journal of the Linnean Society. 2023;139: 370–389. doi: 10.1093/biolinnean/blac060
Language: English
Page range: 57 - 78
Published on: Dec 31, 2024
Published by: The Israel Biocomplexity Center
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Russell W. Carlson, published by The Israel Biocomplexity Center
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.