References
- Cummings RD. Evolution and diversity of glycomolecules from unicellular organisms to humans. BioCosmos. 2024;1: 1–35. doi: 10.2478/biocosmos-2024-0001
- Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons G-J, Darvill A, Hart G, et al. Transforming glycoscience: a roadmap for the future. Vol. 2012. Washington, DC: The National Academy Press; 2012. p.191.
- Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.1–20.
- Zoldos V, Horvat T, Lauc G. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies. Current Opinion in Chemical Biology. 2013;17(1): 34–40. doi: 10.1016/j.cbpa.2012.12.007
- Lauc G, Vojta A, Zoldos V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochimica et Biophysica Acta. 2014;1840(1): 65–70. doi: 10.1016/j.bbagen.2013.08.017
- Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.615–630.
- Kristic J, Lauc G. Ubiquitous importance of protein glycosylation. Methods in Molecular Biology (Clifton, NJ). 2017;1503: 1–12. doi: 10.1007/978-1-4939-6493-2_1
- Lauc G, Zoldos V. Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale. Medical Hypotheses. 2009;73: 510–512. doi: 10.1016/j.mehy.2009.03.059
- Freeze HH, Kinoshita T, Varki A. Chapter 46 glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 521–526.
- Varki A, Kannagi R, Toole B, Stanley P. Chapter 47 glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 597–609.
- Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology. 2007;25: 21–50. doi: 10.1146/annurev.immunol.25.022106.141702
- Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annual Review of Biochemistry. 1988;57: 785–838. doi: 10.1146/annurev.bi.57.070188.004033
- Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH. Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis. ACS Chemical Biology. 2007;2(10): 685–691. doi: 10.1021/cb700178s
- Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6): 759–767. doi: 10.1093/glycob/4.6.759
- Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.103–116.
- Stanley P, Wuhrer M, Lauc G, Stowell SR, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.165–184.
- Lauc G, Zoldos V. Protein glycosylation – an evolutionary crossroad between genes and environment. Molecular bioSystems. 2010;6(12): 2373–2379. doi: 10.1039/c0mb00067a
- Wang TT. IgG Fc glycosylation in human immunity. Current Topics in Microbiology and Immunology. 2019;423: 63–75. doi: 10.1007/82_2019_152
- Kristic J, Lauc G, Pezer M. Immunoglobulin G glycans – biomarkers and molecular effectors of aging. Clinica Chimica Acta. 2022;535: 30–45. doi: 10.1016/j.cca.2022.08.006
- André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: getting familiar with translators of the sugar code. Molecules (Basel, Switzerland). 2015;20(2): 1788–1823. doi: 10.3390/molecules20021788
- Rudiger H, Gabius HJ. The biochemical basis and coding capacity of the sugar code. In: Gabius HJ. (ed.) The sugar code: fundamentals of glycosciences. Weinheim: Wiley-Blackwell; 2009. p. 3–14.
- Lombard J. Early evolution of polyisoprenol biosynthesis and the origin of cell walls. PeerJ. 2016;4: e2626. doi: 10.7717/peerj.2626
- Eichler J, Guan Z. Lipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylation. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids. 2017;1862(6): 589–599. doi: 10.1016/j.bbalip.2017.03.005
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014;42(Database issue): D490–D495. doi: 10.1093/nar/gkt1178
- Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, et al. ER chaperones use a protein folding and quality control glycocode. Molecular Cell. 2023;83(24): 4524–4537.e5. doi: 10.1016/j.molcel.2023.11.006
- Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Letters. 2015;589(22): 3379–3387. doi: 10.1016/j.febslet.2015.07.021
- Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.529–538.
- Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell. 2021;184(9): 2412–2429.e16. doi: 10.1016/j.cell.2021.03.035
- Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.43–52.
- Connerly PL. How do proteins move through the Golgi apparatus? Nature Education. 2010;3(9): 60–66. doi:
www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/ - D’Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Frontiers in Cell and Developmental Biology. 2019;7: 118. doi: 10.3389/fcell.2019.00118
- Blackburn JB, D’Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Letters. 2019;593(17): 2466–2487. doi: 10.1002/1873-3468.13570
- Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, et al. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biological Reviews of the Cambridge Philosophical Society. 2022;97(2): 732–748. doi: 10.1111/brv.12820
- Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.79–92.
- Taylor ME, Drickamer K, Imberty A, van Kooyk Y, Schnaar RL, Etzler ME, et al. Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.375–386.
- Bournazos S, Ravetch JV. Fcgamma receptor pathways during active and passive immunization. Immunological Reviews. 2015;268(1): 88–103. doi: 10.1111/imr.12343
- Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Advances in Experimental Medicine and Biology. 2011;780: 113–124. doi: 10.1007/978-1-4419-5632-3_10
- Bournazos S, Ravetch JV. Diversification of IgG effector functions. International Immunology. 2017;29(7): 303–310. doi: 10.1093/intimm/dxx025
- Bournazos S, Ravetch JV. Fcgamma receptor function and the design of vaccination strategies. Immunity. 2017;47(2): 224–233. doi: 10.1016/j.immuni.2017.07.009
- Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochimica et Biophysica Acta. 2006;1760(4): 693–700. doi: 10.1016/j.bbagen.2005.10.002
- Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology. 2020;30(4): 214–225. doi: 10.1093/glycob/cwz068
- Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24): 9868–9872. doi: 10.1073/pnas.1307864110
- Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target? Journal of Autoimmunity. 2019;96: 14–23. doi: 10.1016/j.jaut.2018.10.006
- Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. Journal of Autoimmunity. 2015;57: 1–13. doi: 10.1016/j.jaut.2014.12.002
- Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science (New York, NY). 2002;296(5566): 298–300. doi: 10.1126/science.1068883
- Parekh RB, Tse AGD, Dwek RA, Williams AF, Rademacher TW. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal. 1987;6: 1233–1244. doi: 10.1002/j.1460-2075.1987.tb02359.x
- Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology. 2022;17(11): 2993–3012. doi: 10.1021/acschembio.1c00689
- Zeng X, Novotny MV, Clemmer DE, Trinidad JC. A graphical representation of glycan heterogeneity. Glycobiology. 2022;32(3): 201–207. doi: 10.1093/glycob/cwab116
- Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. European Journal of Biochemistry/FEBS. 1993;218(1): 1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x
- Sharon N, Lis H. Carbohydrates in cell recognition. Scientific American. 1993;268(1): 82–89. doi: 10.1038/scientificamerican0193-82
- Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology. 2018;333: 46–57. doi: 10.1016/j.cellimm.2018.03.007
- Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, et al. Glycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune response. Immunology. 2023;168(2): 217–232. doi: 10.1111/imm.13494
- Kong Y, Chen H, Chen M, Li Y, Li J, Liu Q, et al. Abnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosis. Frontiers in Oncology. 2022;12: 855952. doi: 10.3389/fonc.2022.855952
- Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, et al. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Advances. 2019;9(38): 22064–22073. doi: 10.1039/C9RA04341A
- Liu L, Li D, Shu J, Wang L, Zhang F, Zhang C, et al. Protein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancer. Frontiers in Oncology. 2020;10: 568433. doi: 10.3389/fonc.2020.568433
- Yang G, Tan Z, Lu W, Guo J, Yu H, Yu J, et al. Quantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategy. Journal of Proteome Research. 2015;14(2): 639–653. doi: 10.1021/pr5006026
- Yang J, Liu X, Shu J, Hou Y, Chen M, Yu H, et al. Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconjugate Journal. 2020;37(3): 373–394. doi: 10.1007/s10719-020-09910-6
- Yu H, Li X, Chen M, Zhang F, Liu X, Yu J, et al. Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma. Frontiers in Oncology. 2019;9: 636. doi: 10.3389/fonc.2019.00636
- Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. Journal of Diabetes Research. 2017;2017: 5728087. doi: 10.1155/2017/5728087
- Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2022;24(10): 1865–1880. doi: 10.1007/s12094-022-02858-z
- Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Advances in Cancer Research. 2023;157: 123–155. doi: 10.1016/bs.acr.2022.07.003
- Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. The Journal of Experimental Medicine. 2022;219(6): e20211505. doi: 10.1084/jem.20211505
- Godefa TM, Derks S, Thijssen V. Galectins in esophageal cancer: current knowledge and future perspectives. Cancers (Basel). 2022;14(23): 5790. doi: 10.3390/cancers14235790
- In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022.
- Neelamegham S, Mahal LK. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Current Opinion in Structural Biology. 2016;40: 145–152. doi: 10.1016/j.sbi.2016.09.013
- Dall’Olio F, Trinchera M. Epigenetic bases of aberrant glycosylation in cancer. International Journal of Molecular Sciences. 2017;18(5): 998. doi: 10.3390/ijms18050998
- Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein Journal of Organic Chemistry. 2021;17: 1712–1724. doi: 10.3762/bjoc.17.119
- Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59(34): 3098–3110. doi: 10.1021/acs.biochem.9b00784
- Halfon MS. Perspectives on gene regulatory network evolution. Trends in Genetics: TIG. 2017;33(7): 436–447. doi: 10.1016/j.tig.2017.04.005
- Schember I, Halfon MS. Common themes and future challenges in understanding gene regulatory network evolution. Cells. 2022;11(3): 510. doi: 10.3390/cells11030510
- Frankel N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2012;241(12): 1857–1866. doi: 10.1002/dvdy.23871
- Davidson EH. Evolutionary bioscience as regulatory systems biology. Developmental Biology. 2011;357(1): 35–40. doi: 10.1016/j.ydbio.2011.02.004
- Agrawal P, Kurcon T, Pilobello KT, Rakus JF, Koppolu S, Liu Z, et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(11): 4338–4343. doi: 10.1073/pnas.1321524111
- Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Central Science. 2022;8(11): 1527–1536. doi: 10.1021/acscentsci.2c00748
- Groth T, Diehl AD, Gunawan R, Neelamegham S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics. 2022;38(24): 5413–5420. doi: 10.1093/bioinformatics/btac704
- Kelkar A, Groth T, Neelamegham S. Forward genetic screens of human glycosylation pathways using the GlycoGene CRISPR library. Current Protocols. 2022;2(4): e402. doi: 10.1002/cpz1.402
- Stewart N, Wisnovsky S. Bridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylation. Frontiers in Molecular Biosciences. 2022;9: 934584. doi: 10.3389/fmolb.2022.934584
- Lisacek F, Tiemeyer M, Mazumder R, Aoki-Kinoshita KF. Worldwide glycoscience informatics infrastructure: the GlySpace alliance. Journal of the American Chemical Society Au. 2023;3(1): 4–12. doi: 10.1021/jacsau.2c00477
- Bojar D, Lisacek F. Glycoinformatics in the artificial intelligence era. Chemical Reviews. 2022;122(20): 15971–15988. doi: 10.1021/acs.chemrev.2c00110
- Hayes C, Daponte V, Mariethoz J, Lisacek F. This is GlycoQL. Bioinformatics (Oxford, England). 2022;38(Suppl_2): ii162–ii167. doi: 10.1093/bioinformatics/btac500
- Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An interactive view of glycosylation. Methods in Molecular Biology (Clifton, NJ). 2022;2370: 41–65. doi: 10.1007/978-1-0716-1685-7_3
- Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p. 705–718.
- Kasper BT, Koppolu S, Mahal LK. Insights into miRNA regulation of the human glycome. Biochemical and Biophysical Research Communications. 2014;445(4): 774–779. doi: 10.1016/j.bbrc.2014.01.034
- Indellicato R, Trinchera M. Epigenetic regulation of glycosylation in cancer and other diseases. International Journal of Molecular Sciences. 2021;22(6): 2980. doi: 10.3390/ijms22062980
- Indellicato R, Trinchera M. Epigenetic regulation of glycosylation. Advances in Experimental Medicine and Biology. 2021;1325: 173–186. doi: 10.1007/978-3-030-70115-4_8
- Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. American Journal of Physiology. Cell Physiology. 2022;322(5): C849–C864. doi: 10.1152/ajpcell.00085.2022
- Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145. doi: 10.3389/fgene.2014.00145
- Stambuk T, Klasic M, Zoldos V, Lauc G. N-glycans as functional effectors of genetic and epigenetic disease risk. Molecular Aspects of Medicine. 2021;79: 100891. doi: 10.1016/j.mam.2020.100891
- Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Current Opinion in Chemical Biology. 2019;53: 16–24. doi: 10.1016/j.cbpa.2019.05.032
- Valguarnera E, Kinsella RL, Feldman MF. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. Journal of Molecular Biology. 2016;428(16): 3206–3220. doi: 10.1016/j.jmb.2016.04.013
- Nothaft H, Szymanski CM. Bacterial protein N-glycosylation: new perspectives and applications. Journal of Biological Chemistry. 2013;288(10): 6912–6920. doi: 10.1074/jbc.R112.417857
- Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science (New York, NY). 2002;298(5599): 1790–1793. doi: 10.1126/science.298.5599.1790
- Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biology Direct. 2016;11: 36. doi: 10.1186/s13062-016-0137-2
- Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.297–306.
- Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Molecular Microbiology. 2020;114(5): 735–741. doi: 10.1111/mmi.14569
- Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018;555(7696): 328–333. doi: 10.1038/nature25755
- Wang P, Wang H, Gai J, Tian X, Zhang X, Lv Y, et al. Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Scientific Reports. 2017;7: 40301. doi: 10.1038/srep40301
- Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14: 117. doi: 10.1186/1471-2164-14-117
- Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Letters. 2022;596(18): 2345–2363. doi: 10.1002/1873-3468.14457
- Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science (New York, NY). 2006;311(5762): 796–800. doi: 10.1126/science.1113832
- Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution. 2010;314(3): 182–186. doi: 10.1002/jez.b.21329
- Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144(6): 970–985. doi: 10.1016/j.cell.2011.02.017
- Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics. 2009;10(2): 141–148. doi: 10.1038/nrg2499
- Frankel N, Wang S, Stern DL. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(51): 20975–20979. doi: 10.1073/pnas.1207715109
- Hynes RO. The evolution of metazoan extracellular matrix. The Journal of Cell Biology. 2012;196(6): 671–679. doi: 10.1083/jcb.201109041
- Meyer SM. Darwin’s Doubt: the explosive origin of animal life and the case for intelligent design. New York, NY: Harper Collins; 2013. p.498.
- Noble D. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology. 2011;589(Pt 5): 1007–1015. doi: 10.1113/jphysiol.2010.201384
- Noble D, Noble R. Origins and demise of selfish gene theory. Theoretical Biology Forum. 2022;115(1–2): 29–43. doi: 10.19272/202211402003
- Wells J. Membrane patterns carry ontogenetic information that is specified indpendently of DNA. BIO-Complexity. 2014;2014(2): 1–28. doi: 10.5048/BIO-C.2014.2
- Vane-Wright RI, Corning PA. Teleonomy in living systems: an overview. Biological Journal of the Linnean Society. 2023;139: 341–356. doi: 10.1093/biolinnean/blad037
- Babcock G, McShea DW. Resolving teleology’s false dilemma. Biological Journal of the Linnean Society. 2023;139(4): 415–432. doi: 10.1093/biolinnean/blac058
- Gontier N. Teleonomy as a problem of self-causation. Biological Journal of the Linnean Society. 2023;139(4): 388–414. doi: 10.1093/biolinnean/blac111
- Heylighen F. The meaning and origin of goal-directedness: a dynamical systems perspective. Biological Journal of the Linnean Society. 2023;139: 370–389. doi: 10.1093/biolinnean/blac060