References
- Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 1–20.
- Fraser-Reid BO, Tatsuta K, Thiem J. Glycoscience: chemistry and chemical biology, 2nd Ed. Berlin; New York: Springer; 2008.
- Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;184: 3109–3124.e22.
- Zhang N, Tang W, Torres L, Wang X, Ajaj Y, Zhu L, et al. Cell surface RNAs control neutrophil recruitment. Cell. 2024;187: 846–860.e17.
- Wilson IBH, Paschinger K, Cummings RD, Aebi M. Nematoda. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 335–348.
- Gagneux P, Panin V, Hennet T, Aebi M, Varki A. Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 265–278.
- Merry CLR, Lindahl U, Couchman J, Esko JD. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 217–232.
- Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-Glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 103–116.
- Whitfield C, Szymanski CM, Lewis AL, Aebi M. Eubacteria. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 279–296.
- Speciale I, Di Lorenzo F, Notaro A, Noel E, Agarkova I, Molinaro A, et al. N-glycans from Paramecium bursaria chlorella virus MA-1D: re-evaluation of the oligosaccharide common core structure. Glycobiology. 2022;32: 260–273.
- O’Neill MA, Darvill AG, Etzler ME, Mohnen D, Perez S, Mortimer JC, et al. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 319–334.
- Paschinger K, Wols F, Yan S, Jin C, Vanbeselaere J, Dutkiewicz Z, et al. N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. The Journal of Biological Chemistry. 2023;299: 103053.
- Cummings RD. A periodic table of monosaccharides. Glycobiology. 2023: cwad088.
- Imperiali B. Bacterial carbohydrate diversity – a Brave New World. Current Opinion in Chemical Biology. 2019;53: 1–8.
- Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4: 759–767.
- Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 615–630.
- Trujillo MN, Galligan JJ. Reconsidering the role of protein glycation in disease. Nature Chemical Biology. 2023;19: 922–927.
- Schilling KM, Jorwal P, Ubilla-Rodriguez NC, Assafa TE, Gatdula JRP, Vultaggio JS, et al. N-glycosylation is a potent regulator of prion protein neurotoxicity. The Journal of Biological Chemistry. 2023;299: 105101.
- Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell. 2023;186: 5517–5535.e24.
- Wang S, Sun E, Liu Y, Yin B, Zhang X, Li M, et al. Landscape of new nuclease-containing antiphage systems in Escherichia coli and the counterdefense roles of bacteriophage T4 genome modifications. Journal of Virology. 2023;97: e0059923.
- Csoka AB, Stern R. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology. 2013;23: 398–411.
- DeAngelis PL. Microbial glycosaminoglycan glycosyltransferases. Glycobiology. 2002;12: 9R–16R.
- DeAngelis PL. Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. The Anatomical Record. 2002;268: 317–326.
- Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: comparative biochemical study. Communicative and Integrative Biology. 2011;4: 150–158.
- Dubrovin EV, Barinov NA, Ivanov DA, Klinov DV. Single-molecule AFM study of hyaluronic acid softening in electrolyte solutions. Carbohydrate Polymers. 2023;303: 120472.
- LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clinica Chimica Acta. 2007;375: 1–9.
- Lloyd KO, Yin BW, Kudryashov V. Isolation and characterization of ovarian cancer antigen CA 125 using a new monoclonal antibody (VK-8): identification as a mucin-type molecule. International Journal of Cancer. 1997;71: 842–850.
- Das S, Batra SK. Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Research. 2015;75: 4669–4674.
- Higuchi T, Orita T, Nakanishi S, Katsuya K, Watanabe H, Yamasaki Y, et al. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. The Journal of Biological Chemistry. 2004;279: 1968–1979.
- Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Molecular Cancer. 2014;13: 129.
- Johansson ME, Ambort D, Pelaseyed T, Schutte A, Gustafsson JK, Ermund A, et al. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences. 2011;68: 3635–3641.
- Radicioni G, Cao R, Carpenter J, Ford AA, Wang T, Li L, et al. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunology. 2016;9: 1442–1454.
- Tan S, Cheng PW. Mucin biosynthesis: identification of the cis-regulatory elements of human C2GnT-M gene. American Journal of Respiratory Cell and Molecular Biology. 2007;36: 737–745.
- Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Advanced Drug Delivery Reviews. 2022;184: 114182.
- Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(Suppl 1): 4659–4665.
- Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochimica et Biophysica Acta. 2008;1780: 546–563.
- Garde S, Chodisetti PK, Reddy M. Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus. 2021;9.
- Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie (International ed. in English). 2005;44: 3358–3393.
- Jia Z, O’Mara ML, Zuegg J, Cooper MA, Mark AE. Vancomycin: ligand recognition, dimerization and super-complex formation. The FEBS Journal. 2013;280: 1294–1307.
- Rudd PM, Karlsson NG, Khoo KH, Thaysen-Andersen M, Wells L, Packer NH. Glycomics and glycoproteomics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 689–704.
- Jayaraman V, Toledo-Patino S, Noda-Garcia L, Laurino P. Mechanisms of protein evolution. Protein Science. 2022;31: e4362.
- Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145.
- Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell. 2006;126: 841–845.
- Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology. 2019;29: 625–644.
- Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. The Journal of Biological Chemistry. 2013;288: 6904–6911.
- Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harbor Perspectives in Biology. 2011;3: a005462.
- West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, glycoproteomics, and glycogenomics: an inter-taxa evolutionary perspective. Molecular and Cellular Proteomics. 2021;20: 100024.
- Alberts B, Heald R, Johnson A, Morgan D, Raff M. Protein function. In: Molecular biology of the cell, 7th Ed. New York: WW. Norton & Company, Inc.; 2022. p. 195–222.
- Wilson TJ, Lilley DM. RNA catalysis – is that it? RNA. 2015;21: 534–537.
- Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. Essentials of glycobiology, 4th Ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor; 2022.
- Murate M, Kobayashi T. Distribution of glycolipids in the plasma membrane monitored by specific probes in combination with sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL). Methods in Molecular Biology. 2023;2613: 189–202.
- Keenan EK, Zachman DK, Hirschey MD. Discovering the landscape of protein modifications. Molecular Cell. 2021;81: 1868–1878.
- Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. Journal of Biosciences. 2020;45: 135.
- Zhang X, Li D, Zhu J, Zheng J, Li H, He Q, et al. RNAPII degradation factor Def1 is required for development, stress response, and full virulence of magnaporthe oryzae. Journal of Fungi (Basel). 2023;9: 467.
- Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446: 1017–1022.
- Zachara NE, Akimoto Y, Boyce M, Hart GW. The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 251–264.
- Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. Journal of Neurochemistry. 2018;144: 7–34.
- Mannino MP, Hart GW. The beginner’s guide to O-GlcNAc: from nutrient sensitive pathway regulation to its impact on the immune system. Frontiers in Immunology. 2022;13: 828648.
- Krause MW, Love DC, Ghosh SK, Wang P, Yun S, Fukushige T, et al. Nutrient-driven O-GlcNAcylation at promoters impacts genome-Wide RNA Pol II distribution. Front Endocrinology (Lausanne). 2018;9: 521.
- Bandini G, Haserick JR, Motari E, Ouologuem DT, Lourido S, Roos DS, et al. O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America. 2016;113: 11567–11572.
- Sun TP. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Current Opinion in Structural Biology. 2021;68: 113–121.
- West CM, Blader IJ. Oxygen sensing by protozoans: how they catch their breath. Current Opinion in Microbiology. 2015;26: 41–47.
- Sekar K, Linker SM, Nguyen J, Grunhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Applied and Environmental Microbiology. 2020;86: e00049–20.
- Liu QH, Tang JW, Wen PB, Wang MM, Zhang X, Wang L. From prokaryotes to eukaryotes: insights into the molecular structure of glycogen particles. Frontiers in Molecular Biosciences. 2021;8: 673315.
- Pfister B, Zeeman SC. Formation of starch in plant cells. Cellular and Molecular Life Sciences. 2016;73: 2781–2807.
- Lomako J, Lomako WM, Whelan WJ. Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochimica et Biophysica Acta. 2004;1673: 45–55.
- Sun RC, Young LEA, Bruntz RC, Markussen KH, Zhou Z, Conroy LR, et al. Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metabolism. 2021;33: 1404–1417.e9.
- Li C, Hu Z. Is liver glycogen fragility a possible drug target for diabetes? FASEB Journal. 2020;34: 3–15.
- Visuttijai K, Hedberg-Oldfors C, Thomsen C, Glamuzina E, Kornblum C, Tasca G, et al. Glycogenin is dispensable for glycogen synthesis in human muscle, and glycogenin deficiency causes polyglucosan storage. The Journal of Clinical Endocrinology and Metabolism. 2020;105: 557–566.
- Testoni G, Duran J, Garcia-Rocha M, Vilaplana F, Serrano AL, Sebastian D, et al. Lack of glycogenin causes glycogen accumulation and muscle function impairment. Cell Metabolism. 2017;26: 256–266.e4.
- Tetlow IJ, Bertoft E. A review of starch biosynthesis in relation to the building block-backbone model. International Journal of Molecular Sciences. 2020;21: 7011.
- Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12: 43R–56R.
- Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology. 2020;21: 729–749.
- Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, et al. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Letters. 2011;585: 645–650.
- Olsen EH, Rahbek-Nielsen H, Thogersen IB, Roepstorff P, Enghild JJ. Posttranslational modifications of human inter-alpha-inhibitor: identification of glycans and disulfide bridges in heavy chains 1 and 2. Biochemistry. 1998;37: 408–416.
- Maynard JC, Burlingame AL, Medzihradszky KF. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), a new post-translational modification in mammals. Molecular and Cellular Proteomics. 2016;15: 3405–3411.
- Xiao H, Wu R. Global and site-specific analysis revealing unexpected and extensive protein S-GlcNAcylation in human cells. Analytical Chemistry. 2017;89: 3656–3663.
- Di Marco F, Blochl C, Esser-Skala W, Schapertons V, Zhang T, Wuhrer M, et al. Glycoproteomics of a single protein: revealing tens of thousands of myozyme glycoforms by hybrid HPLC-MS approaches. Molecular and Cellular Proteomics. 2023;22: 100622.
- Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports. 2020;10: 14991.
- Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America. 1990;87: 4576–4579.
- Messner P. Bacterial glycoproteins. Glycoconjugate Journal. 1997;14: 3–11.
- Schaffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiology Reviews. 2017;41: 49–91.
- Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics. 2003;3: 363–379.
- Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Israel Journal of Chemistry. 2023;63: e202200050.
- Janhvi S, Saini S, Singh V, Sharma T, Rao A. ProGlycProt V3.0: updated insights into prokaryotic glycoproteins and their glycosyltransferases. Glycobiology. 2023: cwad103.
- Mescher MF, Strominger JL. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. The Journal of Biological Chemistry. 1976;251: 2005–2014.
- Abu-Qarn M, Eichler J, Sharon N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Current Opinion in Structural Biology. 2008;18: 544–550.
- Benz I, Schmidt MA. Never say never again: protein glycosylation in pathogenic bacteria. Molecular Microbiology. 2002;45: 267–276.
- Sleytr UB, Schuster B, Egelseer EM, Pum D. S-layers: principles and applications. FEMS Microbiology Reviews. 2014;38: 823–864.
- Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nature Reviews Microbiology. 2014;12: 211–222.
- Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host and Microbe. 2009;5: 522–526.
- Veith PD, Gorasia DG, Reynolds EC. Characterization of the O-Glycoproteome of Flavobacterium johnsoniae. Journal of Bacteriology. 2023;205: e0009323.
- Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM. O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins. The Journal of Biological Chemistry. 2021;296: 100249.
- Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA. Structure of the fibre-forming protein pilin at 2.6 a resolution. Nature. 1995;378: 32–38.
- Benz I, Schmidt MA. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Molecular Microbiology. 2001;40: 1403–1413.
- Yari S, Afrough P, Yari F, Ghazanfari Jajin M, Fateh A, Hadizadeh Tasbiti A. A potent subset of Mycobacterium tuberculosis glycoproteins as relevant candidates for vaccine and therapeutic target. Scientific Reports. 2023;13: 22194.
- Tucci P, Portela M, Chetto CR, Gonzalez-Sapienza G, Marin M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One. 2020;15: e0221837.
- Szymanski CM. Bacterial glycosylation, it’s complicated. Frontiers in Molecular Biosciences. 2022;9: 1015771.
- Young NM, Brisson JR, Kelly J, Watson DC, Tessier L, Lanthier PH, et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. The Journal of Biological Chemistry. 2002;277: 42530–42539.
- Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Molecular Microbiology. 1999;32: 1022–1030.
- Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schaffer C. The s-layer glycome-adding to the sugar coat of bacteria. International Journal of Microbiology. 2011;2011: 127870.
- Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nature Chemical Biology. 2011;7: 78–80.
- Waglechner N, McArthur AG, Wright GD. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nature Microbiology. 2019;4: 1862–1871.
- Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM. Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function, survival in HeLa cells. The Journal of Biological Chemistry. 2017;292: 4499–4518.
- Mikkola S. Nucleotide sugars in chemistry and biology. Molecules. 2020;25: 5755.
- Surmacz L, Swiezewska E. Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochemical and Biophysical Research Communications. 2011;407: 627–632.
- Banfalvi G. Prebiotic pathway from ribose to RNA formation. International Journal of Molecular Sciences. 2021;22: 3857.
- Delidovich IV, Simonov AN, Taran OP, Parmon VN. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemSusChem. 2014;7: 1833–1846.
- Krisnamurthy R, Liotta CL. The potential of glyoxylate as a prebiotic source molecule and a reactant in protometabolic pathways—The glyoxylose reaction. Chem Biology. 2023;9.
- Yi R, Mojica M, Fahrenbach AC, James Cleaves H, 2nd, Krishnamurthy R, Liotta CL. Carbonyl migration in uronates affords a potential prebiotic pathway for pentose production. Journal of the American Chemical Society Au. 2023;3: 2522–2535.
- Higgs PG, Lehman N. The RNA World: molecular cooperation at the origins of life. Nature Reviews Genetics. 2015;16: 7–17.
- Omran A, Menor-Salvan C, Springsteen G, Pasek M. The messy alkaline formose reaction and its link to metabolism. Life (Basel). 2020;10: 125.
- Benner SA, Kim HJ, Kim MJ, Ricardo A. Planetary organic chemistry and the origins of biomolecules. Cold Spring Harbor Perspectives in Biology. 2010;2: a003467.
- Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature. 2001;414: 879–883.
- Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, et al. Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National Academy of Sciences of the United States of America. 2019;116: 24440–24445.
- Zellner NEB, McCaffrey VP, Butler JHE. Cometary glycolaldehyde as a source of pre-RNA molecules. Astrobiology. 2020;20: 1377–1388.
- Tsai CH, Chen J, Szostak JW. Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 14598–14603.
- Banfalvi G. Why ribose was selected as the sugar component of nucleic acids. DNA and Cell Biology. 2006;25: 189–196.
- Banfalvi G. Ribose selected as precursor to life. DNA and Cell Biology. 2020;39: 177–186.
- Bernhardt HS, Tate WP. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biology Direct. 2012;7: 4.
- Yi R, Tran QP, Ali S, Yoda I, Adam ZR, Cleaves HJ, 2nd, et al. A continuous reaction network that produces RNA precursors. Proceedings of the National Academy of Sciences of the United States of America. 2020;117: 13267–13274.
- Rivas M, Becerra A, Lazcano A. On the early evolution of catabolic pathways: a comparative genomics Approach. I. The cases of glucose, ribose, and the nucleobases catabolic routes. Journal of Molecular Evolution. 2018;86: 27–46.
- Blackmond DG. The origin of biological homochirality. Cold Spring Harbor Perspectives in Biology. 2019;11: a032540.
- Breslow R, Cheng ZL. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions. Proceedings of the National Academy of Sciences of the United States of America. 2010;107: 5723–5725.
- Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, et al. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochimica Acta Part A, Biomolecular Spectroscopy. 2017;185: 317–335.
- Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-amino acids and D-amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules. 2021;11: 1716.
- Gao DM, Kobayashi T, Adachi S. Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Bioscience, Biotechnology, and Biochemistry. 2015;79: 1005–1010.
- Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer – Structure, metabolism and in planta modifications. Plant Science. 2022;318: 111223.
- Pfister B, Zeeman SC, Rugen MD, Field RA, Ebenhoh O, Raguin A. Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. Photosynthesis Research. 2020;145: 55–70.
- Damager I, Engelsen SB, Blennow A, Moller BL, Motawia MS. First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration. Chemical Reviews. 2010;110: 2049–2080.
- Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM. Lafora disease offers a unique window into neuronal glycogen metabolism. The Journal of Biological Chemistry. 2018;293: 7117–7125.
- Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany. 2011;62: 1775–1801.
- Mollers KB, Cannella D, Jorgensen H, Frigaard NU. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels. 2014;7: 64.
- Xu X, Yang Y, Liu C, Sun Y, Zhang T, Hou M, et al. The evolutionary history of the sucrose synthase gene family in higher plants. BMC Plant Biology. 2019;19: 566.
- Rabbani N, Thornalley PJ. Glycation research in amino acids: a place to call home. Amino Acids. 2012;42: 1087–1096.
- Twarda-Clapa A, Olczak A, Bialkowska AM, Koziolkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11: 1312.
- Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology. 2002;40: 871–898.
- Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13: 17R–27R.
- Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: advantages, disadvantages, and avoidance strategies. Foods. 2021;10: 1998.
- Cardona T. Origin of bacteriochlorophyll A and the early diversification of photosynthesis. PLoS One. 2016;11: e0151250.
- Rothschild LJ. The evolution of photosynthesis…again? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2008;363: 2787–2801.
- Stirbet A, Lazar D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. Annals of Botany. 2020;126: 511–537.
- Blankenship RE. Early evolution of photosynthesis. Plant Physiology. 2010;154: 434–438.
- Margulis L. Symbiosis in cell evolution. San Francisco: W.H. Freeman; 1992.
- Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311: 1737–1740.
- Kinoshita T. Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series. Journal of Lipid Research. 2016;57: 4–5.
- Cummings RD, Pierce JM. The challenge and promise of glycomics. Chem Biology. 2014;21: 1–15.
- Goettig P. Effects of glycosylation on the enzymatic activity and mechanisms of proteases. International Journal of Molecular Sciences. 2016;17: 1969.
- Goth CK, Mehta AY, McQuillan AM, Baker KJ, Hanes MS, Park SS, et al. Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell Chemical Biology. 2023;30: 893–905.e7.
- Yamauchi M, Sricholpech M. Lysine post-translational modifications of collagen. Essays in Biochemistry. 2012;52: 113–133.
- Tanwar A, Stanley P. Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis. Frontiers in Immunology. 2023;14: 1097332.
- Bonnardel F, Haslam SM, Dell A, Feizi T, Liu Y, Tajadura-Ortega V, et al. Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. Nature Partner Journals Biofilms and Microbiomes. 2021;7: 49.
- Pan Y, Xia L. Emerging roles of podoplanin in vascular development and homeostasis. Frontiers of Medicine. 2015;9: 421–430.
- Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus. 2018;8.
- Blaskovich MAT, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA. Developments in glycopeptide antibiotics. American Chemical Society Infectious Diseases. 2018;4: 715–735.
- Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: linchpins in the organization and function of membrane microdomains. Frontiers in Cell and Developmental Biology. 2020;8: 589799.
- Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, et al. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular beta-glucosidases. Journal of Lipid Research. 2016;57: 451–463.
- Guo Z. The structural diversity of natural glycosphingolipids (GSLs). Journal of Carbohydrate Chemistry. 2022;41: 63–154.
- Kalisch B, Dormann P, Holzl G. DGDG and Glycolipids in plants and Algae. Sub Cellular Biochemistry. 2016;86: 51–83.
- Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Frontiers in Physiology. 2023;14: 1244158.
- Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences of the United States of America. 2005;102: 12459–12464.
- Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. The Plant Journal. 2015;84: 188–201.
- Allen KN, Imperiali B. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Current Opinion in Structural Biology. 2019;59: 81–90.
- Abdel-Mawgoud AM, Stephanopoulos G. Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology. 2018;3: 3–19.
- Kelleher DJ, Banerjee S, Cura AJ, Samuelson J, Gilmore R. Dolichol-linked oligosaccharide selection by the oligosaccharyl-transferase in protist and fungal organisms. The Journal of Cell Biology. 2007;177: 29–37.
- Jones MB, Rosenberg JN, Betenbaugh MJ, Krag SS. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochimica et Biophysica Acta. 2009;1790: 485–494.
- Oriol R, Martinez-Duncker I, Chantret I, Mollicone R, Codogno P. Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. Molecular Biology and Evolution. 2002;19: 1451–1463.
- Swiezewska E, Danikiewicz W. Polyisoprenoids: structure, biosynthesis and function. Progress in Lipid Research. 2005;44: 235–258.
- Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Archives of Biochemistry and Biophysics. 2012;517: 83–97.
- Hunter WN. The non-mevalonate pathway of isoprenoid precursor biosynthesis. The Journal of Biological Chemistry. 2007;282: 21573–21577.
- Gould SB. Membranes and evolution. Current Biology. 2018;28: R381–R385.
- Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends in Biochemical Sciences. 2009;34: 206–215.
- Richter JR, Sanderson RD. The glycocalyx: pathobiology and repair. Matrix Biology Plus. 2023;17: 100128.
- Ruiz N. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights. 2015;8: 21–31.
- Sanyal S, Menon AK. Flipping lipids: why an’ what’s the reason for? ACS Chemical Biology. 2009;4: 895–909.
- Fujikawa K, Han Y, Osawa T, Mori S, Nomura K, Muramoto M, et al. Structural requirements of a glycolipid MPIase for membrane protein integration. Chemistry. 2023;29: e202300437.
- Chalat M, Menon I, Turan Z, Menon AK. Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis. The Journal of Biological Chemistry. 2012;287: 15523–15532.
- Reza S, Ugorski M, Suchanski J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology. 2021;31: 1416–1434.
- Zelnik ID, Ventura AE, Kim JL, Silva LC, Futerman AH. The role of ceramide in regulating endoplasmic reticulum function. Biochimica et Biophysica Acta Mol Cell Biol Lipids. 2020;1865: 158489.
- Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. The Journal of Biological Chemistry. 1998;273: 25880–25888.
- Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J. The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. The Biochemical Journal. 2003;371: 1013–1019.
- Munster-Kuhnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, et al. Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology. 2004;14: 43R–51R.
- Freeze HH, Steet R, Suzuki T, Kinoshita T, Schnaar RL. Genetic disorders of glycan degradation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 583–598.
- Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus. 2019;9: 20180060.
- Chen DD, Wang ZB, Wang LX, Zhao P, Yun CH, Bai L. Structure, catalysis, chitin transport, and selective inhibition of chitin synthase. Nature Communications. 2023;14: 4776.
- Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydrate Research. 2012;356: 12–24.
- Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annual Review of Biochemistry. 2002;71: 635–700.
- Yamanaka K, Maruyama C, Takagi H, Hamano Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chemical Biology. 2008;4: 766–772.
- Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Seminars in Cell and Developmental Biology. 2015;41: 71–78.
- Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 529–538.
- Suzuki T, Yoshida Y. Ever-expanding NGLY1 biology. Journal of Biochemistry. 2022;171: 141–143.
- Harada Y, Ohkawa Y, Maeda K, Taniguchi N. Glycan quality control in and out of the endoplasmic reticulum of mammalian cells. The FEBS Journal. 2022;289: 7147–7162.
- Parodi AJ, Lederkremer GZ, Mendelzon DH. Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides. The Journal of Biological Chemistry. 1983;258: 5589–5595.
- Parodi AJ. Protein glucosylation and its role in protein folding. Annual Review of Biochemistry. 2000;69: 69–93.
- Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 11676–11681.
- Mary B, Maurya S, Arumugam S, Kumar V, Jayandharan GR. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes. The FEBS Journal. 2019;286: 4964–4981.
- Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The importance of glycans of viral and host proteins in enveloped virus infection. Frontiers in Immunology. 2021;12: 638573.
- Feng T, Zhang J, Chen Z, Pan W, Chen Z, Yan Y, et al. Glycosylation of viral proteins: implication in virus-host interaction and virulence. Virulence. 2022;13: 670–683.
- Akiyama H, Miller C, Patel HV, Hatch SC, Archer J, Ramirez NG, et al. Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. Journal of Virology. 2014;88: 8813–8825.
- Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease. 2016;27: 1–11.
- Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. Journal of Molecular Biology. 2011;410: 582–608.
- Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in virus-host interactions: a structural perspective. Frontiers in Molecular Biosciences. 2021;8: 666756.
- Wagh K, Hahn BH, Korber B. Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Current Opinion in HIV and AIDS. 2020;15: 267–274.
- Chauhan RP, Gordon ML. An overview of influenza a virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes. 2022;58: 255–269.
- Thompson AJ, Paulson JC. Adaptation of influenza viruses to human airway receptors. The Journal of Biological Chemistry. 2021;296: 100017.
- Zimmermann W, Broll H, Ehlers B, Buhk HJ, Rosenthal A, Goltz M. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. Journal of Virology. 2001;75: 1186–1194.
- Lete C, Markine-Goriaynoff N, Machiels B, Pang PC, Xiao X, Canis K, et al. Bovine herpesvirus 4 modulates its beta-1,6-N-acetylglucosaminyltransferase activity through alternative splicing. Journal of Virology. 2016;90: 2039–2051.
- Jackson RJ, Hall DF, Kerr PJ. Myxoma virus encodes an alpha2,3-sialyltransferase that enhances virulence. Journal of Virology. 1999;73: 2376–2384.
- O’Reilly DR, Miller LK. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science. 1989;245: 1110–1112.
- O’Reilly DR. Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Insect Biochemistry and Molecular Biology. 1995;25: 541–550.
- Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, et al. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood. 2003;101: 3615–3621.
- Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. The Journal of General Virology. 2004;85: 2741–2754.
- Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, et al. The astounding world of glycans from giant viruses. Chemical Reviews. 2022;122: 15717–15766.
- Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, et al. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. The Journal of Biological Chemistry. 2014;289: 24428–24439.
- Piacente F, Gaglianone M, Laugieri ME, Tonetti MG. The autonomous glycosylation of large DNA viruses. International Journal of Molecular Sciences. 2015;16: 29315–29328.
- Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses. 2019;12: 20.
- De Castro C, Duncan GA, Garozzo D, Molinaro A, Sturiale L, Tonetti M, et al. Biophysical approaches to solve the structures of the complex glycan shield of chloroviruses. Advances in Experimental Medicine and Biology. 2018;1104: 237–257.
- Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proceedings of the National Academy of Sciences of the United States of America. 2009;106: 21848–21853.
- Luther KB, Hulsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme. The Journal of Biological Chemistry. 2011;286: 43701–43709.
- Shah N, Hulsmeier AJ, Hochhold N, Neidhart M, Gay S, Hennet T. Exposure to mimivirus collagen promotes arthritis. Journal of Virology. 2014;88: 838–845.
- Messner P, Schaffer C, Kosma P. Bacterial cell-envelope glycoconjugates. Advances in Carbohydrate Chemistry and Biochemistry. 2013;69: 209–272.
- Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology. 2010;2: a000414.
- Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 297–306.
- Gorska-Fraczek S, Sandstrom C, Kenne L, Rybka J, Strus M, Heczko P, et al. Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydrate Research. 2011;346: 2926–2932.
- Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB Journal. 1994;8: 217–225.
- Klein G, Raina S. Regulated control of the assembly and diversity of LPS by noncoding sRNAs. BioMed Research International. 2015;2015: 153561.
- Poxton IR. Antibodies to lipopolysaccharide. Journal of Immunological Methods. 1995;186: 1–15.
- Kalynych S, Morona R, Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiology Reviews. 2014;38: 1048–1065.
- Zhang X, Payne M, Kaur S, Lan R. Improved genomic identification, clustering, and serotyping of shiga toxin-producing Escherichia coli using cluster/serotype-specific gene markers. Frontiers in Cellular and Infection Microbiology. 2021;11: 772574.
- Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. Journal of Clinical Microbiology. 2000;38: 2465–2467.
- Kehr JC, Dittmann E. Biosynthesis and function of extracellular glycans in cyanobacteria. Life (Basel). 2015;5: 164–180.
- Klingl A, Pickl C, Flechsler J. Archaeal cell walls. Sub Cellular Biochemistry. 2019;92: 471–493.
- Assandri MH, Malamud M, Trejo FM, Serradell MLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. Current Research in Microbial Sciences. 2023;4: 100187.
- Seifert GJ, Strasser R, Van Damme EJM. Editorial: Plant glycobiology – a sweet world of glycans, glycoproteins, glycolipids, and carbohydrate-binding proteins. Frontiers in Plant Science. 2021;12: 751923.
- Fogarty CA, Harbison AM, Dugdale AR, Fadda E. How and why plants and human N-glycans are different: insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates. Beilstein Journal of Organic Chemistry. 2020;16: 2046–2056.
- Strasser R. Plant protein glycosylation. Glycobiology. 2016;26: 926–939.
- Beihammer G, Maresch D, Altmann F, Strasser R. Glycosylphosphatidylinositol-anchor synthesis in plants: a glycobiology perspective. Frontiers in Plant Science. 2020;11: 611188.
- Strasser R. Biological significance of complex N-glycans in plants and their impact on plant physiology. Frontiers in Plant Science. 2014;5: 363.
- Xu J, Du H, Shi H, Song J, Yu J, Zhou Y. Protein O-glycosylation regulates diverse developmental and defense processes in plants. Journal of Experimental Botany. 2023;74: 6119–6130.
- Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harbor Perspectives in Biology. 2011;3: a004952.
- Lei L. Polysaccharide structure: a hint from gut bacteria. Nature Plants. 2017;3: 17062.
- Mohnen D. Pectin structure and biosynthesis. Current Opinion in Plant Biology. 2008;11: 266–277.
- Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annual Review of Plant Biology. 2013;64: 747–779.
- Le Normand M, Rietzler B, Vilaplana F, Ek M. Macromolecular model of the pectic polysaccharides isolated from the bark of Norway Spruce (Picea abies). Polymers (Basel). 2021;13: 1106.
- Bonnardel F, Perez S, Lisacek F, Imberty A. Structural database for lectins and the unilectin web platform. Methods in Molecular Biology. 2020;2132: 1–14.
- Ingale AG, Hivrale AU. Plant as a plenteous reserve of lectin. Plant Signaling and Behavior. 2013;8: e26595.
- Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall – peptidoglycan and arabinogalactan. Cold Spring Harbor Perspectives in Medicine. 2015;5: a021113.
- Endler A, Persson S. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant. 2011;4: 199–211.
- Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, et al. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet Journal of Rare Diseases. 2023;18: 329.
- Lefeber DJ, Freeze HH, Steet R, Kinoshita T. Congenital disorders of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 599–614.
- Berninsone P, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proceedings of the National Academy of Sciences of the United States of America. 2001;98: 3738–3743.
- Koderi Valappil S, Shetty P, Deim Z, Terhes G, Urban E, Vaczi S, et al. Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of pseudomonas aeruginosa multidrug resistant strains. Frontiers in Microbiology. 2021;12: 783722.
- Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews. 2014;38: 916–931.
- Rothschild-Rodriguez D, Hedges M, Kaplan M, Karav S, Nobrega FL. Phage-encoded carbohydrate-interacting proteins in the human gut. Frontiers in Microbiology. 2022;13: 1083208.
- Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. The Journal of Experimental Medicine. 1923;38: 73–79.
- Avery OT, Goebel WF. Chemoimmunological studies on the soluble specific substance of pneumococcus: I. The isolation and properties of the acetyl polysaccharide of pneumococcus type I. The Journal of Experimental Medicine. 1933;58: 731–755.
- Griffith F. The significance of pneumococcal types. The Journal of Hygiene. 1928;27: 113–159.
- Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. The Journal of General Physiology. 1952;36: 39–56.
- Cobb M. Oswald avery, DNA, and the transformation of biology. Current Biology. 2014;24: R55–R60.
- Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Iii. The Journal of Experimental Medicine. 1944;79: 137–158.
- Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiology Letters. 2016;363: fnw002.
- Dunstan RA, Bamert RS, Tan KS, Imbulgoda U, Barlow CK, Taiaroa G, et al. Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae. Cell Reports. 2023;42: 112551.
- Filik K, Szermer-Olearnik B, Oleksy S, Brykala J, Brzozowska E. Bacteriophage tail proteins as a tool for bacterial pathogen recognition-a literature review. Antibiotics (Basel). 2022;11: 555.
- Islam MZ, Fokine A, Mahalingam M, Zhang Z, Garcia-Doval C, van Raaij MJ, et al. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathogens. 2019;15: e1008193.
- Wilson JH, Luftig RB, Wood WB. Interaction of bacteriophage T4 tail fiber components with a lipopolysaccharide fraction from Escherichia coli. Journal of Molecular Biology. 1970;51:423–434.
- Borin JM, Lee JJ, Lucia-Sanz A, Gerbino KR, Weitz JS, Meyer JR. Rapid bacteria-phage coevolution drives the emergence of multiscale networks. Science. 2023;382: 674–678.
- Bishop JR, Gagneux P. Evolution of carbohydrate antigens – microbial forces shaping host glycomes? Glycobiology. 2007;17: 23R–34R.
- Sommer R, Makshakova ON, Wohlschlager T, Hutin S, Marsh M, Titz A, et al. Crystal structures of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense. Structure. 2018;26: 391–402.e4.
- Hilbert ZA, Haffener PE, Young HJ, Schwiesow MJ. W, Leffler EM, Elde NC. Rapid evolution of glycan recognition receptors reveals an axis of host-microbe arms races beyond canonical protein-protein interfaces. Genome Biology and Evolution. 2023;15: evad119.
- Chang YC, Nizet V. Siglecs at the host-pathogen interface. Advances in Experimental Medicine and Biology. 2020;1204: 197–214.
- Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth glycans at the host-parasite interface and their potential for developing novel therapeutics. Frontiers in Molecular Biosciences. 2021;8: 807821.
- Hokke CH, van Diepen A. Helminth glycomics – glycan repertoires and host-parasite interactions. Molecular and Biochemical Parasitology. 2017;215: 47–57.
- Eckmair B, Gao C, Mehta AY, Dutkiewicz Z, Vanbeselaere J, Cummings RD, et al. Recognition of highly branched N-glycans of the porcine whipworm by the immune system. Molecular and Cellular Proteomics. 2024;23: 100711.
- van Die I, Cummings RD. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 2010;20: 2–12.
- Rappuoli R, De Gregorio E, Costantino P. On the mechanisms of conjugate vaccines. Proceedings of the National Academy of Sciences of the United States of America. 2019;116: 14–16.
- Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology. 2012;10: 323–335.
- Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nature Reviews Gastroenterology and Hepatology. 2020;17: 597–617.
- Fekete E, Buret AG. The role of mucin O-glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions. American Journal of Physiology Gastrointestinal and Liver Physiology. 2023;324: G452–G465.
- Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Current Biology. 2022;32: R257–R264.
- Couchman JR, Pataki CA. An introduction to proteoglycans and their localization. The Journal of Histochemistry and Cytochemistry. 2012;60: 885–897.
- Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Frontiers in Cell and Developmental Biology. 2023;11: 1182524.
- Moller SR, Yi X, Velasquez SM, Gille S, Hansen PLM, Poulsen CP, et al. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports. 2017;7: 45341.
- Leszczuk A, Kalaitzis P, Kulik J, Zdunek A. Review: structure and modifications of arabinogalactan proteins (AGPs). BMC Plant Biology. 2023;23:45.
- Okuma H, Hord JM, Chandel I, Venzke D, Anderson ME, Walimbe AS, et al. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on alpha-dystroglycan and prevents muscular dystrophy. Elife. 2023;12: e82811.
- Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology. 2023;33: 911–926.
- Endo T. Glycobiology of alpha-dystroglycan and muscular dystrophy. Journal of Biochemistry. 2015;157: 1–12.
- Dempsey CE, Bigotti MG, Adams JC, Brancaccio A. Analysis of alpha-dystroglycan/LG domain binding modes: investigating protein motifs that regulate the affinity of isolated LG domains. Frontiers in Molecular Biosciences. 2019;6: 18.
- Jinno A, Park PW. Role of glycosaminoglycans in infectious disease. Methods in Molecular Biology. 2015;1229: 567–585.
- Joseph S, Campbell KP. Lassa fever virus binds matriglycan-a polymer of alternating xylose and glucuronate-on alpha-dystroglycan. Viruses. 2021;13: 1679.
- Rambukkana A, Yamada H, Zanazzi G, Mathus T, Salzer JL, Yurchenco PD, et al. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science. 1998;282: 2076–2079.
- Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. Elife. 2021;10: e66538.
- Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum. 2015;3.
- Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Molecular Biology and Evolution. 2014;31: 1102–1120.
- Becerro MA, Uriz MJ, Maldonado M, Turon X. Advances in sponge science: phylogeny, systematics, ecology. Preface. Advances in Marine Biology. 2012;61: ix–x.
- Ehrlich H, Wysokowski M, Zoltowska-Aksamitowska S, Petrenko I, Jesionowski T. Collagens of poriferan origin. Marine Drugs. 2018;16: 79.
- Jesionowski T, Norman M, Zoltowska-Aksamitowska S, Petrenko I, Joseph Y, Ehrlich H. Marine spongin: naturally prefabricated 3d scaffold-based biomaterial. Marine Drugs. 2018;16: 88.
- Bateman JF, Shoulders MD, Lamande SR. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connective Tissue Research. 2022;63: 210–227.
- Katzman RL, Halford MH, Reinhold VN, Jeanloz RW. Isolation and structure determination of glucosylgalactosylhydroxylysine from sponge and sea anemone collagen. Biochemistry. 1972;11: 1161–1167.
- Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, et al. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. The Journal of Biological Chemistry. 2004;279: 30945–30953.
- Li RC, Wong MY, DiChiara AS, Hosseini AS, Shoulders MD. Collagen’s enigmatic, highly conserved N-glycan has an essential proteostatic function. Proceedings of the National Academy of Sciences of the United States of America. 2021;118: e2026608118.
- Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME Journal. 2013;7: 2287–2300.
- Wilson HV. On some phenomena of coalescene and regeneration in sponges. Journal of Experimental Zoology. 1907;5: 245–258.
- Ereskovsky A, Borisenko IE, Bolshakov FV, Lavrov AI. Whole-body regeneration in sponges: diversity, fine mechanisms, and future prospects. Genes (Basel). 2021;12: 506.
- Jarchow J, Burger MM. Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges. Cell Adhesion and Communication. 1998;6: 405–414.
- Vilanova E, Ciodaro PJ, Bezerra FF, Santos GRC, Valle-Delgado JJ, Anselmetti D, et al. Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium. Glycobiology. 2020;30: 710–721.
- Vilanova E, Coutinho CC, Mourao PA. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction. Glycobiology. 2009;19: 860–867.
- Vilanova E, Coutinho C, Maia G, Mourao PA. Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates. Cell and Tissue Research. 2010;340: 523–531.
- Grice LF, Gauthier MEA, Roper KE, Fernandez-Busquets X, Degnan SM, Degnan BM. Origin and evolution of the sponge aggregation factor gene family. Molecular Biology and Evolution. 2017;34: 1083–1099.
- Bucior I, Scheuring S, Engel A, Burger MM. Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. The Journal of Cell Biology. 2004;165: 529–537.
- Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 79–92.
- Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays. 1999;21: 412–421.
- Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nature Reviews Nephrology. 2019;15: 346–366.
- Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 43–52.
- Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. The FEBS Journal. 2021;288: 7183–7212.
- Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, et al. An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Molecular Cell. 2019;75: 394–407.e5.
- Cummings RD. Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconjugate Journal. 2019;36: 241–257.
- Terrapon N, Henrissat B, Aoki-Kinoshita KF, Surolia A, Stanley P. A genomic view of glycobiology. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 93–102.
- An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Current Opinion in Chemical Biology. 2009;13: 421–426.
- Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446: 1030–1037.
- Cummings RD. The repertoire of glycan determinants in the human glycome. Molecular Biosystems. 2009;5: 1087–1104.
- Galili U. Biosynthesis of alpha-Gal Epitopes (Galalpha1-3Galbeta1-4GlcNAc-R) and their unique potential in future alpha-Gal therapies. Frontiers in Molecular Biosciences. 2021;8: 746883.
- Altman MO, Gagneux P. Absence of Neu5Gc and presence of Anti-Neu5Gc antibodies in humans-an evolutionary perspective. Frontiers in Immunology. 2019;10: 789.
- Durham SD, Wei Z, Lemay DG, Lange MC, Barile D. Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals. Scientific Reports. 2023;13: 10345.
- Segurel L, Gao Z, Przeworski M. Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance. Bioessays. 2013;35: 862–867.
- Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Annals of Human Biology. 2013;40: 463–471.
- Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164: 337–340.
- Roy AL, Conroy RS. Toward mapping the human body at a cellular resolution. Molecular Biology of the Cell. 2018;29: 1779–1785.
- Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends in Cancer. 2018;4: 537–552.
- Larsen ISB, Narimatsu Y, Joshi HJ, Siukstaite L, Harrison OJ, Brasch J, et al. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proceedings of the National Academy of Sciences of the United States of America. 2017;114: 11163–11168.
- Merleev AA, Park D, Xie Y, Kailemia MJ, Xu G, Ruhaak LR, et al. A site-specific map of the human plasma glycome and its age and gender-associated alterations. Scientific Reports. 2020;10: 17505.
- Thomes L, Karlsson V, Lundstrom J, Bojar D. Mammalian milk glycomes: connecting the dots between evolutionary conservation and biosynthetic pathways. Cell Reports. 2023;42: 112710.
- de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, et al. Human milk: from complex tailored nutrition to bioactive impact on child cognition and behavior. Critical Reviews in Food Science and Nutrition. 2023;63: 7945–7982.
- Turiak L, Sugar S, Acs A, Toth G, Gomory A, Telekes A, et al. Site-specific N-glycosylation of HeLa cell glycoproteins. Scientific Reports. 2019;9: 14822.
- Uhler R, Popa-Wagner R, Kroning M, Brehm A, Rennert P, Seifried A, et al. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology. 2021;31: 859–872.
- Wang D, Kuzyk V, Madunic K, Zhang T, Mayboroda OA, Wuhrer M, et al. In-depth analysis of the N-glycome of colorectal cancer cell lines. International Journal of Molecular Sciences. 2023;24: 4842.
- Klaric TS, Gudelj I, Santpere G, Novokmet M, Vuckovic F, Ma S, et al. Human-specific features and developmental dynamics of the brain N-glycome. Science Advances. 2023;9: eadg2615.
- Suttapitugsakul S, Stavenhagen K, Donskaya S, Bennett DA, Mealer RG, Seyfried NT, et al. Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain. Molecular and Cellular Proteomics. 2022;21: 100433.
- Lee J, Ha S, Kim M, Kim SW, Yun J, Ozcan S, et al. Spatial and temporal diversity of glycome expression in mammalian brain. Proceedings of the National Academy of Sciences of the United States of America. 2020;117: 28743–28753.
- Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, et al. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nature Communications. 2022;13: 275.
- Helm J, Hirtler L, Altmann F. Towards mapping of the human brain N-glycome with standardized graphitic carbon chromatography. Biomolecules. 2022;12: 85.
- Xiao K, Han Y, Tian Z. Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells. Anal BioAnalytical Chemistry. 2018;410: 4195–4202.
- Kavanaugh D, O’Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews. 2015;73: 359–375.
- Ashwood C, Pratt B, MacLean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. The Analyst. 2019;144: 3601–3612.
- Riley NM, Bertozzi CR, Pitteri SJ. A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics. Molecular and Cellular Proteomics. 2021;20: 100029.
- Wesener DA, Dugan A, Kiessling LL. Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology. 2017;44: 168–178.
- Liu FT, Stowell SR. The role of galectins in immunity and infection. Nature Reviews Immunology. 2023;23: 479–494.
- Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends in Biochemical Sciences. 1998;23: 321–324.
- Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, et al. Glycans are a novel biomarker of chronological and biological ages. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2014;69: 779–789.
- Lado-Baleato O, Torre J, O’Flaherty R, Alonso-Sampedro M, Carballo I, Fernández-Merino C, et al. Age-Related changes in serum N-glycome in men and women—clusters associated with comorbidity. Biomolecules. 2024;14: 17.
- Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. The Journal of Nutrition. 2018;148: 1733–1742.
- Shi Y, Han B, Zhang L, Zhou P. Comprehensive identification and absolute quantification of milk oligosaccharides in different species. Journal of Agricultural and Food Chemistry. 2021;69: 15585–15597.
- Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, et al. Expression system for structural and functional studies of human glycosylation enzymes. Nature Chemical Biology. 2018;14: 156–162.
- Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology, 4th Ed. Cold Spring Harbor (NY); 2022. p. 705–718.
- Muthana SM, Campbell CT, Gildersleeve JC. Modifications of glycans: biological significance and therapeutic opportunities. ACS Chemical Biology. 2012;7: 31–43.
- Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii. 2023;27: 224–239.
- Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. American Chemical Society Central Science. 2022;8: 1527–1536.
- Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59: 3098–3110.
- Kawanishi K, Saha S, Diaz S, Vaill M, Sasmal A, Siddiqui SS, et al. Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. The Journal of Clinical Investigation. 2021;131: e137681.
- Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo de Edelenyi F, et al. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Sante study. BMC Medicine. 2020;18: 262.
- Diaz SL, Padler-Karavani V, Ghaderi D, Hurtado-Ziola N, Yu H, Chen X, et al. Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS One. 2009;4: e4241.
- Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IB. Complicated N-linked glycans in simple organisms. Biological Chemistry. 2012;393: 661–673.
- Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, et al. Global mapping of glycosylation pathways in human-derived cells. Developmental Cell. 2021;56: 1195–1209.e7.
- Joud M, Moller M, Olsson ML. Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci. Scientific Reports. 2018;8: 6040.
- Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, et al. ABO blood group antigens and differential glycan expression: perspective on the evolution of common human enzyme deficiencies. IScience. 2023;26: 105798.
- Arthur CM, Stowell SR. The development and consequences of red blood cell alloimmunization. Annual Review of Pathology. 2023;18: 537–564.
- Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, et al. Innate immune lectins kill bacteria expressing blood group antigen. Nature Medicine. 2010;16: 295–301.
- Abegaz SB. Human ABO blood groups and their associations with different diseases. BioMed Research International. 2021;2021: 6629060.
- Bua RO, Messina A, Sturiale L, Barone R, Garozzo D, Palmigiano A. N-glycomics of human erythrocytes. International Journal of Molecular Sciences. 2021;22: 8063.
- Svensson L, Hult AK, Stamps R, Angstrom J, Teneberg S, Storry JR, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood. 2013;121: 1459–1468.
- De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods. Molecular and Cellular Proteomics. 2020;19: 11–30.
- Otaki M, Hirane N, Natsume-Kitatani Y, Nogami Itoh M, Shindo M, Kurebayashi Y, et al. Mouse tissue glycome atlas 2022 highlights inter-organ variation in major N-glycan profiles. Scientific Reports. 2022;12: 17804.
- Suttapitugsakul S, Matsumoto Y, Aryal RP, Cummings RD. Large-scale and site-specific mapping of the murine brain O-glycoproteome with IMPa. Analytical Chemistry. 2023;95: 13423–13430.
- Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nature Chemical Biology. 2007;3: 339–348.
- Noel M, Cummings RD, Mealer RG. N-glycans show distinct spatial distribution in mouse brain. Glycobiology. 2023;33: 935–942.
- Zaytseva OO, Seeling M, Kristic J, Lauc G, Pezer M, Nimmerjahn F. Fc-linked IgG N-glycosylation in FcgammaR knock-out mice. Frontiers in Cell and Developmental Biology. 2020;8: 67.
- Durin Z, Houdou M, Legrand D, Foulquier F. Metalloglycobiology: the power of metals in regulating glycosylation. Biochimica et Biophysica Acta Gen Subj. 2023;1867: 130412.