References
- Ambrish G., Ganesh B., Ganesh A., Srinivas C., Dhanraj Mensinkal K. (2022): Logistic regression technique for prediction of cardiovascular disease. Global Transitions Proceedings 3, 127-130.
- American Diabetes Association Professional Practice Committee (2025): 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes – 2025. Diabetes Care 48, S27-S49.
- Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L., Tse D., Etemadi M., Ye W., Corrado G., Naidich D.P., Shetty S. (2019): End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine 25, 954-961.
- Dai B., Chen R.C., Zhu S.Z., Zhang W.W. (2018): Using Random Forest Algorithm for Breast Cancer Diagnosis. International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 449-452.
- Fenner M.E. (2019): Machine Learning with Python for Everyone. Addison Wesley.
- Fiłon J. (2019): Diabetes – a public health challenge in the 21st century. Medical University of Białystok. https://pbc.biaman.pl/Content/60948/Cukrzyca_wyzwanie_zdrowia_publicznego_w_XXI_w.pdf [accessed: June 30, 2025]. (in Polish)
- Kasperczuk A., Dardzińska A. (2017): Logistic Regression Methods in Selected Medical Information Systems. T.K. Dang et al. (Eds.): Future Data and Security Engineering 2017, LNCS 10646, pp. 168-177.
- Konukoglu E., Glocker B. (2020): Random forests in medical image computing. Handbook of Medical Image Computing and Computer Assisted Intervention, The Elsevier and MICCAI Society Book Series, pp. 457-480.
- Laguarta J., Hueto F., Subirana B. (2020): COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open Journal of Engineering in Medicine and Biology 1, 275-281.
- Małowiecki A. (2023): Data Resampling Methods to Solve Data Imbalance Problem in Credit Card Fraud Detection. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław (in Polish). https://dbc.wroc.pl/Content/125401/Malowiecki_Metody_resamplingu_danych_w_rozwiazaniu.pdf
- McKinney S.M., Sieniek M., Godbole V., Godwin J., Antropova N., Ashrafian H., Back T., Chesus M., Corrado G.S., Darzi A., Etemadi M., Garcia-Vicente F., Gilbert F.J., Halling-Brown M., Hassabis D., Jansen S., Karthikesalingam A., Kelly C.J., King D., Ledsam J.R., Melnick D., Mostofi H., Peng L., Reicher J.J., Romera-Paredes B., Sidebottom R., Suleyman M., Tse D., Young K.C., Fauw J.D., Shetty S. (2020): International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
- Ogłoszka A., Smaga Ł. (2022): Classification methods in the diagnosis of breast cancer. Biometrical Letters 59, 99-126.
- Rajpurkar P., Irvin J., Ball R.L., Zhu K., Yang B., Mehta H., Duan T., Ding D., Bagul A., Langlotz C.P., Patel B.N., Yeom K.W., Shpanskaya K., Blankenberg F.G., Seekins J., Amrhein T.J., Mong D.A., Halabi S.S., Zucker E.J., Ng A.Y., Lungren M.P. (2018): Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS medicine 15, e1002686.
- Ranjbarzadeh R., Dorosti S., Ghoushchi S., Caputo A., Tirkolaee E., Ali S., Arshadi Z., Bendechache M. (2023): Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods. Computers in Biology and Medicine 152, 106443.
- R Core Team (2025): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 4.5.1 (2025-06-13). https://www.R-project.org/.
- Reszke M., Smaga Ł. (2023): Machine learning methods in the detection of brain tumors. Biometrical Letters 60, 125-148.
- Rosińska A. (2025): Statistical methods and machine learning algorithms in the diabetes prediction problem. Master’s thesis in Data Science. Adam Mickiewicz University, Poznań (in Polish).
- Saito T., Rehmsmeier M. (2015): The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE 10(3), e0118432.
- Starmer J. (2022): The StatQuest Illustrated Guide To Machine Learning. StatQuest Publications.
- Stoltzfus J. (2011): Logistic regression: A brief primer. Academic Emergency Medicine 18, 1099-1104.
- Włodarczyk E., Diabetes prevention and early detection program. Łódź 2018-2020. https://rpo.lodzkie.pl/images/2017/808-nabor-10.3.2/zal14.pdf [accessed: June 30, 2025]. (in Polish)
- Wojdan K., Moniuszko M. (2022): Artificial intelligence in medicine – current status and implementation challenges. NAUKA 3, 41-52. (in Polish)
- Varma S., Simon R. (2006): Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 91.