Have a personal or library account? Click to login
Cumulative ordinal quasi-symmetry model and its separation for square contingency tables with ordered categories Cover

Cumulative ordinal quasi-symmetry model and its separation for square contingency tables with ordered categories

Open Access
|Jul 2024

References

  1. Agresti A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics & Probability Letters 1: 313–316.
  2. Agresti A. (2002): Categorical data analysis, 2nd ed. John Wiley & Sons, Hoboken, New Jersey.
  3. Agresti A. (2010): Analysis of ordinal categorical data, 2nd ed. John Wiley & Sons, Hoboken, New Jersey.
  4. Akaike H. (1974): A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19: 716–723.
  5. Bowker A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.
  6. Caussinus H. (1965): Contribution à l’Analyse Statistique des Tableaux de Corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse 29: 77–183.
  7. Goodman L.A. (1979): Multiplicative models for square contingency tables with ordered categories. Biometrika 66: 413–418.
  8. McCullagh P. (1978): A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 65: 413–418.
  9. Miyamoto N., Ohtsuka W., Tomizawa S. (2004): Linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables with ordered categories. Biometrical Journal 46: 664–674.
  10. Schwarz G. (1978): Estimating the dimension of a model. The Annals of Statistics 6: 416–464.
  11. Stuart A. (1955): A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 42: 412–416.
  12. Tahata K. (2020): Separation of symmetry for square tables with ordinal categorical data. Japanese Journal of Statistics and Data Science 3: 469–484.
  13. Tahata K. (2022): Advances in quasi-symmetry for square contingency tables. Symmetry 14: 1051.
  14. Tahata K., Tomizawa S. (2014): Symmetry and asymmetry models and decompositions of models for contingency tables. SUT Journal of Mathematics 50: 131–165.
  15. Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42.
  16. Tomizawa S. (1993): Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories. Biometrics 49: 883–887.
  17. Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: application to decayed teeth data. Biometrical Letters 43: 91–98.
  18. Tomizawa S., Miyamoto N., Yamamoto K. (2006): Decomposition for polynomial cumulative symmetry model in square contingency tables with ordered categories. Metron 64: 303–314.
  19. Tomizawa S., Miyamoto N., Yamamoto K., Sugiyama A. (2007): Extensions of linear diagonal-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables. Statistica Neerlandica 61: 273–283.
  20. Yamamoto K., Ando S., Tomizawa S. (2011): Decomposing asymmetry into extended quasi-symmetry and marginal homogeneity for cumulative probabilities in square contingency tables. Journal of Statistics: Advances in Theory and Applications 5: 1–12.
DOI: https://doi.org/10.2478/bile-2024-0006 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 85 - 100
Published on: Jul 29, 2024
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Shuji Ando, Kouji Yamamoto, Sadao Tomizawa, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.