Caussinus H. (1965): Contribution à l’Analyse Statistique des Tableaux de Corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse 29: 77–183.
Miyamoto N., Ohtsuka W., Tomizawa S. (2004): Linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables with ordered categories. Biometrical Journal 46: 664–674.
Tahata K., Tomizawa S. (2014): Symmetry and asymmetry models and decompositions of models for contingency tables. SUT Journal of Mathematics 50: 131–165.
Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42.
Tomizawa S. (1993): Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories. Biometrics 49: 883–887.
Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: application to decayed teeth data. Biometrical Letters 43: 91–98.
Tomizawa S., Miyamoto N., Yamamoto K. (2006): Decomposition for polynomial cumulative symmetry model in square contingency tables with ordered categories. Metron 64: 303–314.
Tomizawa S., Miyamoto N., Yamamoto K., Sugiyama A. (2007): Extensions of linear diagonal-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables. Statistica Neerlandica 61: 273–283.
Yamamoto K., Ando S., Tomizawa S. (2011): Decomposing asymmetry into extended quasi-symmetry and marginal homogeneity for cumulative probabilities in square contingency tables. Journal of Statistics: Advances in Theory and Applications 5: 1–12.