Have a personal or library account? Click to login
Fujiwara’s inequality for synchronous functions and its consequences Cover

Fujiwara’s inequality for synchronous functions and its consequences

Open Access
|Dec 2023

References

  1. Abramovich S., Klaričić Bakula M., Matić M. and Pečarić J. (2005): A variant of Jensen-Steffensen’s inequality and quasi-arithmetic means. J. Math. Anal. Appl. 307: 370–386.
  2. Abramovich S., Klaričić Bakula M. and Banić S. (2006): A variant of Jensen-Steffensen’s inequality for convex and superquadratic functions. J. Inequal. Pure Appl. Math. 7(2): Article 70.
  3. Abramovich S., Barić J., Pečarić J. (2008): A variant of Jessen’s inequality of Mercer’s type for superquadratic functions. J. Inequal. Pure Appl. Math. 9(3): Article 62.
  4. Barić J., Matković A., Pečarić J. (2010) A variant of the Jensen-Mercer operator inequality for superquadratic functions. Mathematical and Computer Modelling. 51: 1230–1239.
  5. Barnett N.S., Cerone P., Dragomir S.S. (2009) Majorisation inequalities for Stieltjes integrals. Applied Mathematics Letters. 22: 416–421.
  6. Cheung W.S., Matković A. and Pečarić J. (2006) A variant of Jensen’s inequality and generalized means. J. Inequal. Pure Appl. Math. 7(1): Article 10.
  7. Dragomir S.S. (2004) Some majorisation type discrete inequalities for convex functions. Math. Inequal. Appl. 7(2): 207–216.
  8. Fujiwara M. (1918) Ein von Brunn vermuteter Satz über konvexe Flächen und eine Verallgemeinerung der Schwarzschen und Tchebyscheffschen Ungleichungen für bestimmte Integrale. Tôhoku Math. J. 13: 228–235.
  9. Gavrea I. (2004) Some considerations on the monotonicity property of power means. J. Inequal. Pure Appl. Math. 5 (4): Article 93.
  10. Hardy G.H., Littlewood J.E. and Pólya G. (1928/29) Some simple inequalities satisfied by convex functions. Messenger Math. 58: 145–152.
  11. Klaričić Bakula M., Matković A., Pečarić J. (2006) Variants of Čebyšev’s inequality with applications. J. Inequal. Appl. Article no. 39692.
  12. Klaričić Bakula M., Matković A., Pečarić J. (2007) On the Jensen-Steffensen inequality for generalized convex functions. Period. Math. Hungar. 55(1): 19–34.
  13. Marshall A.W. and Olkin I. (1979) Theory of Majorization and Its Applications. Academic Press, New York.
  14. Matković A., Pečarić J. and Perić I. (2006) A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 418: 551–564.
  15. Matković A. and Pečarić J. (2007) A variant of Jensen’s inequality for convex functions of several variables. J. Math. Inequal. 1(1): 45–51.
  16. Matković A., Pečarić J. and Perić I. (2008) Refinements of Jensen’s inequality of Mercer’s type for operator convex functions. Math. Inequal. Appl. 11(1): 113–126.
  17. Mercer A.McD. (2003) A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math. 4(4): Article 73.
  18. Mitrinović D.S. (1970) Analytic inequalities. Springer-Verlag, Berlin/New York: p. 40.
  19. Niculescu C.P., Popovici F. (2006) The extension of majorization inequalities within the frame of relative convexity. J. Inequal. Pure Appl. Math. 7(1): Article 27.
  20. Niezgoda M. (2009) A generalization of Mercer’s result on convex functions. Nonlinear Analysis. 71(7-8): 2771–2779.
  21. Niezgoda M. (2008 Remarks on convex functions and separable sequences. Discrete Math. 308: 1765–1773.
  22. Niezgoda M. (2006) Bifractional inequalities and convex cones. Discrete Math. 306: 231–243.
  23. Otachel Z. (2011) Chebyshev type inequalities for synchronous vectors in Banach spaces. Math. Inequal. Appl. 14(2): 421—437.
  24. Otachel Z. (2014) Synchronous sequences and inequalities for convex functions. Appl. Math. Comput. 247: 865–871.
  25. Pečarić J.E., Proschan F., and Tong Y.L. (1992) Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 87. Academic Press Inc.
  26. Shaked M. (1982) A general theory of some positive dependence notions. J. Multivar. Anal. 12: 199–218.
  27. Toader Gh. (1992) Integral and discrete inequalities. Rev. Anal. Numér. Théor. Approx. 21(1): 83–88.
  28. Toader Gh. (1992) Fujiwara’s inequality for functionals. Facta Univ. Ser. Math. Infor. 7: 43–48.
  29. Zălinescu C. (2002) Convex analysis in general vector spaces. World Scientific.
DOI: https://doi.org/10.2478/bile-2023-0011 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 159 - 175
Published on: Dec 29, 2023
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Zdzisław Otachel, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.