Have a personal or library account? Click to login
Johnson–Schumacher Split-Plot Design Modelling of Rice Yield Cover

Johnson–Schumacher Split-Plot Design Modelling of Rice Yield

Open Access
|Jun 2023

References

  1. Almimi A.A., Kulahci M., Montgomery D.C. (2006): Checking the adequacy of fit of models from split-plot designs. Journal of Quality Technology 38: 58–190.
  2. Anderson M.J. (2016): Design of Experiments (DoE): How to handle hard-to-change factors using a split plot. Chemical Engineering, 123(9): 12-1-12-5.
  3. Bates D.M., Watts D.G. (1988): Nonlinear Regression Analysis and Its Applications, New York: Wiley.
  4. Blankenship E.E., Stroup W.W., Evans S.P., Knezevic S.Z. (2003): Statistical Inference for Calibration Points in Nonlinear Mixed Effects Models. American Statistical Association and the International Biometric Society Journal of Agricultural, Biological, and Environmental Statistics, 8(4): 455–468.
  5. David I.J., Adubisi O.D., Ogbaji O.E., Eghwerido J.T., Umar Z.A. (2020): Resistant measures in assessing the adequacy of regression models. Scientific African, 8, e00437. https://doi.org/10.1016/j.sciaf.2020.e00437
  6. David I.J., Asiribo O.E., Dikko H.G. (2016): Resistant Measures in Assessing the Adequacy of Split-plot Design Models. International Journal of Data Science, 1(4): 382–396.
  7. David I.J., Asiribo O.E., Dikko H.G. (2018): Nonlinear Split-Plot Design Model in Parameters Estimation using EGLS-MLE. ComTech: Computer, Mathematics and Engineering Applications, 9(2): 65–71.
  8. David I.J., Asiribo O.E., Dikko H.G. (2019): Parameter Estimation of Nonlinear Split-Plot Design Models: A Theoretical Framework. Journal of Reliability and Statistical Studies, 12(1): 117–129.
  9. David I.J., Asiribo O.E., Dikko H.G. (2022): A Bertalanffy-Richards Split-Plot Design Model and Analysis. Journal of Statistical Modeling and Analysis, 4(1): 56–71.
  10. David I.J., Asiribo O.E., Dikko H.G. (2022): A Weibull Split-Plot Design Model and Analysis. Thailand Statistician, 20(2): 420–434.
  11. David I.J., Asiribo O.E., Dikko H.G. (2023): Nonlinear split-plot design modeling and analysis of rice varieties yield. Scientific African, 19, e01444.
  12. Gumpertz M.L., Pantula S.G. (1992): Nonlinear Regression with Variance Components. Journal of the American Statistical Association, 87(417): 201–209.
  13. Gumpertz M.L., Rawlings J.O. (1992): Nonlinear Regression with Variance Components: Modeling Effects of Ozone on Crop Yield. Crop Science, 32: 219–224.
  14. Harville D.A. (1977): Maximum likelihood approaches to variance components estimation and to related problems. Journal of the American Statistical Association, 72: 320–338.
  15. Huameng G., Fan Y., Lei S. (2017): Split Plot and Data Analysis in SAS. American Institute of Physics Conference Proceedings 1834, 030024 (2017); doi:10.1063/1.4981589.
  16. Klotz J.H. (2006): A computational approach to statistics. Madison: University of Wisconsin.
  17. Knezevic S.Z., Evans S.P., Blankenship E.E., Van Acker R.C., Lindquist J.L. (2002): Critical period for weed control: the concept and data analysis. Agronomy – Faculty Publications. Paper 407.
  18. Kulachi M.A. Menon (2017): Trellis plots as visual aids for analyzing split plot experiments. Quality Engineering, 29(2): 211-225. https://doi.org/10.1080/08982112.2016.1243248
  19. Kvalseth T.O. (1985): Cautionary note about R2. The American Statistician, 39: 279–285.
DOI: https://doi.org/10.2478/bile-2023-0003 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 37 - 52
Published on: Jun 28, 2023
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 I. J. David, O. E. Asiribo, H. G. Dikko, P. O. Ikwuoche, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.