Have a personal or library account? Click to login
Evaluation of the Effect of Prognostic Variables on the Survival Analysis of Prostate Cancer Cover

Evaluation of the Effect of Prognostic Variables on the Survival Analysis of Prostate Cancer

Open Access
|Dec 2022

References

  1. Abeysekera W., Sooriyarachchi M. (2009): Use of Schoenfeld's global test to test the proportional hazards assumption in the Cox proportional hazards model: an application to a clinical study. Journal of the National Science Foundation of Sri Lanka 37(1): 41–51.10.4038/jnsfsr.v37i1.456
  2. Akaike H. (1974): A new look at the statistical model identification. IEEE transactions on automatic control 19(6): 716–723.10.1109/TAC.1974.1100705
  3. Ansin E. (2015): An evaluation of the Cox–Snell residuals.
  4. Baade P.D., Youlden D.R., Krnjacki L.J. (2009): International epidemiology of prostate cancer: geographical distribution and secular trends. Molecular Nutrition and Food Research 53(2): 171–184.10.1002/mnfr.20070051119101947
  5. Bellah S.F., Salam M.A., Billah S.S., Karim M.R. (2022): Genomewide association study of cyp3a4 and cyp3a5 genes in relation to the risk of prostate cancer among Bangladeshi population.10.21203/rs.3.rs-1681214/v1
  6. Bitew Z.W., Ayele E.G., Worku T., Alebel A., Alemu A., Worku F., Yesuf A. (2021): Determinants of mortality among under-five children admitted with severe acute malnutrition in Addis Ababa, Ethiopia. Nutrition Journal 20(1): 1–15.10.1186/s12937-021-00750-0869100934930311
  7. Bland J.M., Altman D.G. (2004): The logrank test. British Medical Journal (BMJ) 328(7447): 1073.10.1136/bmj.328.7447.107340385815117797
  8. Bozdogan and Hamparsum (2003). Statistical data mining and knowledge discovery. CRC Press p.18610.1201/9780203497159
  9. Byar D., Green S. (1980): The choice of treatment for cancer patients based on covariate information. Bulletin du Cancer 67(4): 477–490.
  10. Cox D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological) 34(2), 187–220.10.1111/j.2517-6161.1972.tb00899.x
  11. Esper P., Mo F., Chodak G., Sinner M., Cella D., Pienta K.J. (1997): Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology 50(6): 920–928.10.1016/S0090-4295(97)00459-79426724
  12. Harrell Jr F.E. (2015): Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer.10.1007/978-3-319-19425-7
  13. Hussain S.M.A. (2013): Comprehensive update on cancer scenario of Bangladesh. South Asian Journal of Cancer 2(4): 279.10.4103/2278-330X.119901388906224455659
  14. Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M.J. (2009): Cancer statistics. CA: A cancer journal for clinicians 59(4): 225–249.10.3322/caac.20006
  15. Kaplan E.L., Meier P. (1958): Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282): 457–481.10.1080/01621459.1958.10501452
  16. Kassambara A., Kassambara M.A. (2020): Package ‘ggpubr’. R package version 0.4.0.
  17. Kassambara A., Kosinski M., Biecek P., Fabian S. (2017): Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9.
  18. Kay R. (1986): Treatment effects in competing-risks analysis of prostate cancer data. Biometrics 42(1): 203—211.10.2307/2531258
  19. Lawless J.F., 2011: Statistical models and methods for lifetime data. John Wiley & Sons.
  20. Lunn M., McNeil D. (1995): Applying Cox regression to competing risks. Biometrics 51(2): 524–532.10.2307/2532940
  21. Mantel N. (1966): Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50: 163–170.
  22. Moul J.W., Douglas T.H., McCarthy W.F., McLeod D. G. (1996): Black race is an adverse prognostic factor for prostate cancer recurrence following radical prostatectomy in an equal access health care setting. The Journal of Urology 155(5): 1667–1673.10.1016/S0022-5347(01)66160-3
  23. Team R. C. (2000). R language definition. Vienna, Austria: R Foundation for Statistical Computing.
  24. Shah S.A., Ismail N., Taib S., Mat S.N., Safian N. (2021): Survival analysis and prognostic factors for prostate cancer patients at Universiti Kebangsaan Malaysia medical centre, Kuala Lumpur. Sains Malaysiana 50(5): 1367–1379.10.17576/jsm-2021-5005-16
  25. Shahi M.S.J.R., Ataharul Islam M. (2016): Survival analysis on phase iii clinical trial of estrogen on stage 3 and 4 prostate cancer patients. International Conference on Analysis of Repeated Measures Data, Dhaka, Bangladesh (1): 1.
  26. Srinivas V., Mehta H., Amin A., Choudary R., Gadgil N., Ravishanker D., Phadke A. (1995): Carcinoma of the prostate state at initial presentation. International Urology and Nephrology 27(4): 419–422.10.1007/BF025500778586514
  27. StataCorp L. P. (2007): Stata data analysis and statistical software. Special Edition Release 10, 733.
  28. StataCorp L.P. (2005): Stata base reference manual. College Station: StataCorp LLC.
  29. Therneau T.M., Lumley, T., (2015): Package ‘survival’. R Top Doc, 128(10), pp.28–33. R package version 3.3-1.
  30. Uddin A.K., Khan Z.J., Johirul Islam A. (2013): Cancer care scenario in Bangladesh. South Asian Journal of Cancer 2(2): 102.10.4103/2278-330X.110510387665924455570
  31. Wickham H., Chang W., Wickham M.H. (2016): Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189. R package version 3.4.0.
DOI: https://doi.org/10.2478/bile-2022-0007 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 77 - 98
Published on: Dec 30, 2022
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2022 Shafiq Hossain Sourav, Rownak Jahan Tamanna, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.