Bhattacharyya A. (1943): On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35, 99–110.
Comber A., Chi K., Huy Q.M., Nguyen Q., Lu B., Phe H.H., Harris P. (2020): Distance metric choice can both reduce and induce collinearity in geographically weighted regression, Environ. Plan. B Urban Anal. City Sci, 47, 489–507.10.1177/2399808318784017
Geoghegan D.B. (2008): The Histographic conceptualization of information: A Critical Survey, IEEE Ann. Of History of Computing 30, 66–81.10.1109/MAHC.2008.9
Iliopoulou P., Kitsos C. (2019): Statistical applications in Geography: Spatial Analysis, in Contemporary Essays in Social Sciences & Geography: Theory and Policies, Korres, G., Kourliouros, E., and Kokkinou, A. eds., University of the Aegean, 212–224 (in Greek).
Kitsos C., Iliopoulou P. (2021): Distance measures in spatial statistics, in Social Sciences & Geography: Theory, Methods and Spatial Analysis techniques, Kalabokidis, K., Korres, G., Soulakellis, N., and Feidas, H. eds. University of the Aegean, 96–108 (in Greek).
Kitsos C., Iliopoulou P. (2022): Adopting Information Distance Measures for Geographical Data Analysis. J. of Regional and Socio-Economic Issues, Vol 12(1), 6–27.
Kitsos C., Toulias L.T. (2017): Hellinger distance between generalized normal distributions, British Journal of Mathematics and Computer Science 21, 1–16.10.9734/BJMCS/2017/32229
Kitsos C., Tavoularis K.N. (2009): Logarithmic Sobolev inequalities for information measures, IEEE Transactions on Information Theory 55 (2009), 2554–2561.10.1109/TIT.2009.2018179
Lu B., Charlton M., Harris P., Fotheringham A.S. (2014): Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data, Int J Geogr. Inf. Sci. 28, 660–681.10.1080/13658816.2013.865739