Have a personal or library account? Click to login
Contribution to spring balance weighing designs Cover

Contribution to spring balance weighing designs

Open Access
|Jun 2022

References

  1. Banerjee K.S. (1975): Weighing Designs For Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York.
  2. Ceranka B., Graczyk M. (2014a): Regular D-optimal spring balance weighing designs: construction. Acta Universitatis Lodziensis, Folia Oeconomica 302: 111–125.10.18778/0208-6018.311.08
  3. Ceranka B., Graczyk M. (2014b): Regular E–optimal spring balance weighing designs with correlated errors. Communication in Statistics-Theory and Methods 43: 947–953.10.1080/03610926.2013.826365
  4. Ceranka B., Graczyk M. (2017) : Highly D-efficient weighing design and its construction. Acta Universitatis Lodziensis, Folia Oeconomica 331: 143–151.10.18778/0208-6018.331.09
  5. Ceranka B., Graczyk M. (2018) : Highly D-efficient weighing designs for an even number of objects. Revstat Statistical Journal 16(4) : 475–486.
  6. Ceranka, B., Katulska, K. (1987): Zastosowanie teorii sprężynowych układów wagowych do analizy doświadczeń z mieszankami. Listy Biometryczne XXIV: 17–26.
  7. Ceranka B., Katulska K. (1989): Application of the biased spring balance weighing theory to estimation of differences of line effects for legume content. Biometrical Journal 31: 103–110.10.1002/bimj.4710310113
  8. Graczyk M. (2012a): Notes about A–optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781–784.10.1016/j.jspi.2011.11.008
  9. Graczyk M. (2012b): A–optimal spring balance weighing designs under some conditions. Communication in Statistics-Theory and Methods 41: 2386–2393.10.1080/03610926.2011.653469
  10. Graczyk M. (2013): Some applications on weighing designs. Biometrical Letters 50(1): 15–26.10.2478/bile-2013-0014
  11. Graczyk M. (2014): Relations between randomized block designs and weighing designs in examples. Colloquium Biometricum 44: 97–107.
  12. Hudelson M., Klee V., Larman D. (1996): Largest j-simplices in d-cubes: Some relatives to the Hadamard determinant problem. Linear Algebra and its Applications 24: 519–598.10.1016/0024-3795(95)00541-2
  13. Jacroux M.N., Notz W. (1983): On the optimality of spring balance weighing designs. Annals of Statistics 11: 970–978.10.1214/aos/1176346262
  14. Katulska K. (1984): Zastosowanie teorii układów wagowych do badania upraw paszowych i w geodezji. Czternaste Colloquium Metodologiczne z Agro-Biometrii, PAN: 195–208.
  15. Katulska K., Przybył K. (2007): On certain D-optimal spring balance weighing designs. Journal of Statistical Theory and Practice 1: 393–404.10.1080/15598608.2007.10411848
  16. Neubauer M.G., Watkins S., Zeitlin J. (1997): Maximal j-simplices in the real d-dimensional unit cube. Journal of Combinatorial Theory, Ser. A 80: 1–12.10.1006/jcta.1997.2789
  17. Neubauer G.N., Watkins W., Zeitlin J (1998): Notes on D–optimal designs. Linear Algebra and its Applications 280: 109–127.10.1016/S0024-3795(98)10015-0
DOI: https://doi.org/10.2478/bile-2022-0004 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 47 - 53
Published on: Jun 30, 2022
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Małgorzata Graczyk, Bronisław Ceranka, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.