Agresti, A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics & Probability Letters 1: 313–316.10.1016/0167-7152(83)90051-2
Aitchison, J. (1962): Large-sample restricted parametric tests. Journal of the Royal Statistical Society: Series B 24: 234–250.10.1111/j.2517-6161.1962.tb00456.x
Ando, S. (2021a): Orthogonal decomposition of the sum-symmetry model for square contingency tables with ordinal categories: Use of the exponential sum-symmetry model. Biometrical Letters 58: 95–104.10.2478/bile-2021-0007
Ando, S. (2021b): Orthogonal decomposition of the sum-symmetry model using the two-parameters sum-symmetry model for ordinal square contingency tables. Biometrical Letters 58: 105–117.10.2478/bile-2021-0008
Bowker, A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.10.1080/01621459.1948.1048328418123073
Read, C.B. (1977): Partitioning chi-square in contingency tables: A teaching approach. Communications in Statistics—Theory and Methods 6: 553–562.10.1080/03610927708827513
Tahata, K., Ando, S., Tomizawa, S. (2011): Ridit score type asymmetry model and decomposition of symmetry for square contingency tables. Model Assisted Statistics and Applications 6: 279–286.10.3233/MAS-2011-0186
Yamamoto, K., Tanaka, Y., Tomizawa, S. (2013): Sum-symmetry model and its orthogonal decomposition for square contingency tables with ordered categories. SUT Journal of Mathematics 49: 121–128.10.55937/sut/1393504838
Yamamoto, K., Aizawa, M., Tomizawa, S. (2016): Decomposition of sum-symmetry model for ordinal square contingency tables. European Journal of Statistics and Probability 4: 12–19.