Have a personal or library account? Click to login

Some notes on planning plant protection research in block designs with nested rows and columns

Open Access
|Dec 2021

References

  1. Agrawal B., Banerjee S., Awad R. (2018): Some Constructions of α-Resolvable Balanced Incomplete Block Designs. Statistics and applications 16(2), 65-76.
  2. Baksalary J.K., Tabis Z. (1987): Conditions for the robustness of block designs against the unavailability of data. J. Statist. Planng Inf. 16: 49-54.10.1016/0378-3758(87)90054-1
  3. Berube J., Styan G.P.H. (1993): Decomposable three-way layouts. Journal of Statistical Planning and Inference 36: 311-322.10.1016/0378-3758(93)90133-Q
  4. Dey, A. (1993): Robustness of block designs against missing data. Statistica Sinica 3: 219-231.
  5. Ghosh S. (1982): Robustness of designs against the unavailability of data. J. Statist. Planng Inf. 6: 29-3210.1016/0378-3758(82)90053-2
  6. Godolphin J.D., Godolphin E.J. (2015): The robustness of resolvable block designs against the loss of whole blocks or replicates. J. Statist. Planng Inf. 163, 34-42.10.1016/j.jspi.2015.02.006
  7. Godolphin J.D., Warren H.R. (2011): Improved conditions for the robustness of binary block designs against the loss of whole blocks. J. Statist. Planng Inf. 141, 3498-3505.10.1016/j.jspi.2011.05.003
  8. Kozłowska M. (2001): Planowanie doświadczeń z zakresu ochrony roślin w układach blokowych z zagnieżdżonymi wierszami i kolumnami. Roczniki AR w Poznaniu 313, Poznań.
  9. Kozłowska M., Łacka A., Krawczyk R., Kozłowski R.J. (2011): Some block designs with nested rows and columns for research on pesticide dose limitation. Environmetrics 22(6): 781-788.10.1002/env.1070
  10. Kozłowska M., Łacka A., Skorupska A. (2012): Block design with nested rows and columns for research on food acceptability limitation. Communications in Statistics – Theory and Methods 41(13-14): 2456–2464.10.1080/03610926.2011.617481
  11. Łacka A. (2021): NRC Designs—New Tools for Successful Agricultural Experiments. Agronomy 11, 2406. https://doi.org/10.3390/agronomy1112240610.3390/agronomy11122406
  12. Łacka A., Kozłowska M. (2009): Planning of factorial experiments with one control treatment in a block design with nested rows and columns for environmental research. Environmetrics 20(6): 730-742.10.1002/env.974
  13. Łacka A., Kozłowska M., Bogacka B. (2009a): Estimation and testing hypothesis in a block design with nested rows and columns. Biometrical Letters 46(2): 113-128.
  14. Łacka A.‚ Kozłowska M., Kozłowski J. (2009b): Some optimal block designs with nested rows and columns for research on alternative methods of limiting slug damage. Statistical Papers 50(4): 837-846.10.1007/s00362-009-0258-0
  15. Mejza I, Mejza S. (1994): Model building and analysis for block design with nested rows and columns. Biometrical Journal 36(3): 327-340.10.1002/bimj.4710360311
  16. Parvu V. (2004): Optimal Blocking for Three Treatments and BIBD Robustness. Two Problems in Design Optimality. Dissertation. https://vtechworks.lib.vt.edu/bitstream/handle/10919/29895/dissertation.pdf?sequence=1
  17. Raghavarao D., Federer W.T. (1975): On connectedness in two-way elimination of heterogeneity designs. Ann. Statist. 3, 730-735.10.1214/aos/1176343137
  18. Sathe Y.S., Satam M.R. (1992): Some more robust block designs against the unavailability of data. J. Statist. Planng Inf. 30: 93-98.10.1016/0378-3758(92)90110-E
DOI: https://doi.org/10.2478/bile-2021-0014 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 187 - 198
Published on: Dec 30, 2021
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Maria Kozłowska, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.