Have a personal or library account? Click to login

Orthogonal decomposition of the sum-symmetry model using the two-parameters sum-symmetry model for ordinal square contingency tables

By:
Open Access
|Dec 2021

References

  1. Agresti, A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics & Probability Letters 1: 313–316.10.1016/0167-7152(83)90051-2
  2. Aitchison, J. (1962): Large-sample restricted parametric tests. Journal of the Royal Statistical Society: Series B 24: 234–250.10.1111/j.2517-6161.1962.tb00456.x
  3. Ando, S. (2021): Orthogonal decomposition of the sum-symmetry model for square contingency tables with ordinal categories: Use of the exponential sum-symmetry model. Biometrical Letters: in press.10.1016/j.spl.2020.108973
  4. Bowker, A. H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.10.1080/01621459.1948.1048328418123073
  5. Caussinus, H. (1965): Contribution à l’Analyse Statistique des Tableaux de Corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse 29: 77–183.10.5802/afst.519
  6. Darroch, J.N., Silvey, S.D. (1963): On testing more than one hypothesis. The Annals of Mathematical Statistics 34: 555–567.10.1214/aoms/1177704168
  7. McCullagh, P. (1978): A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 65: 413–418.10.1093/biomet/65.2.413
  8. Rao, C.R. (1973): Linear statistical inference and its applications, 2nd ed. Wiley New York.10.1002/9780470316436
  9. Read, C.B. (1977): Partitioning chi-squape in contingency tables: A teaching approach. Communications in Statistics—Theory and Methods 6: 553–562.10.1080/03610927708827513
  10. Stuart, A. (1955): A test for homogeneity of the marginal distributions in a twoway classification. Biometrika 42: 412–416.10.1093/biomet/42.3-4.412
  11. Tahata, K., Ando, S., Tomizawa, S. (2011): Ridit score type asymmetry model and decomposition of symmetry for square contingency tables. Model Assisted Statistics and Applications 6: 279–286.10.3233/MAS-2011-0186
  12. Tomizawa, S. (1985): Analysis of data in square contingency tables with ordered categories using the conditional symmetry model and its decomposed models. Environmental Health Perspectives 63: 235–239.10.1289/ehp.856323515685004076088
  13. Tomizawa, S. (1987): Decompositions for 2-ratios-parameter symmetry model in square contingency tables with ordered categories. Biometrical Journal 29: 45–55.10.1002/bimj.4710290109
  14. Yamamoto, K., Tanaka, Y., Tomizawa, S. (2013): Sum-symmetry model and its orthogonal decomposition for square contingency tables with ordered categories. SUT Journal of Mathematics 49: 121–128.10.55937/sut/1393504838
  15. Yamamoto, K., Aizawa, M., Tomizawa, S. (2016): Decomposition of sum-symmetry model for ordinal square contingency tables. European Journal of Statistics and Probability 4: 12–19.
DOI: https://doi.org/10.2478/bile-2021-0008 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 105 - 117
Published on: Dec 30, 2021
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Shuji Ando, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.