Have a personal or library account? Click to login
Measure of departure from average marginal homogeneity for the analysis of collapsed ordinal square contingency tables Cover

Measure of departure from average marginal homogeneity for the analysis of collapsed ordinal square contingency tables

Open Access
|Jun 2021

References

  1. Ando S. (2019): A bivariate index for visually measuring marginal inhomogeneity in square tables. International Journal of Statistics and Probability 8:58-65.10.5539/ijsp.v8n5p58
  2. McCullagh P. (1977): A logistic model for paired comparisons with ordered categorical data. Biometrika 64: 449-453.10.2307/2345320
  3. Nogid B., Lacy M. K., Jacobs M., Bruss J. and Dwyer J. (2018): Time course and extent of renal function changes in patients receiving treatment for staphylococcal pneumonias: an analysis comparing telavancin and vancomycin from the ATTAIN trials. Pharmacotherapy 38:990-998.10.1002/phar.2165622109530003567
  4. Stuart A. (1955): A test for homogeneity of the marginal distributions in a two-way classifications. Biometrika 42:412-416.10.1093/biomet/42.3-4.412
  5. Tomizawa, S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14:35-42.
  6. Tomizawa S. and Makii T. (2001): Generalized measures of departure from marginal homogeneity for contingency tables with nominal categories. Journal of Statistical Research 35:1-24.
  7. Tomizawa S., Miyamoto N. and Ashihara N. (2003): Measure of departure from marginal homogeneity for square contingency tables having ordered categories. Behaviormetrika 30:173-193.10.2333/bhmk.30.173
  8. Yamamoto K., Ando S. and Tomizawa S. (2011): A measure of departure from average marginal homogeneity for square contingency tables with ordered categories. Revstat: Statistical Journal 9:115-126.
  9. Yamamoto K., Iwama I. and Tomizawa S. (2020): Measure of departure from marginal homogeneity for the analysis of collapsed square contingency tables with ordered categories. Journal of Statistical Theory and Applications 19:212-222.10.2991/jsta.d.200507.001
DOI: https://doi.org/10.2478/bile-2021-0006 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 81 - 94
Published on: Jun 24, 2021
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Mana Aizawa, Kouji Yamamoto, Sadao Tomizawa, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.