Have a personal or library account? Click to login
Asymmetry models based on ordered score and separations of symmetry model for square contingency tables Cover

Asymmetry models based on ordered score and separations of symmetry model for square contingency tables

By: Shuji Ando  
Open Access
|Jun 2021

References

  1. Agresti A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters 1: 313–316.10.1016/0167-7152(83)90051-2
  2. Agresti A. (2002): Categorical Data Analysis, 2nd edition. Wiley, New York.10.1002/0471249688
  3. Bagheban A.A., Zayeri,F. (2010): A generalization of the uniform association model for assessing rater agreement in ordinal scales. Journal of Applied Statistics 37: 1265–1273.10.1080/02664760903012666
  4. Bishop Y.M.M., Fienberg S.E., Holland P.W. (1975): Discrete multivariate analysis: theory and practice. The MIT Press, Cambridge: Massachusetts.
  5. Bowker A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.10.1080/01621459.1948.1048328418123073
  6. Bross I.D.J. (1958): How to use ridit analysis. Biometrics 14: 18–38.10.2307/2527727
  7. Graubard B.I., Korn E.L. (1987): Choice of column scores for testing independence in ordered 2 × K contingency tables. Biometrics 43: 471–476.10.2307/2531828
  8. Iki K., Tahata K., Tomizawa S. (2009): Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories. Austrian Journal of Statistics 38: 183–192.
  9. Senn S. (2007): Drawbacks to noninteger scoring for ordered categorical data. Biometrics 63: 296–299.10.1111/j.1541-0420.2007.00739_1.x17447957
  10. Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42.
  11. Tomizawa S. (1990): Another linear diagonals-parameter symmetry model for square contingency tables with ordered categories. South African Statistical Journal 24: 117–125.
  12. Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: Application to decayed teeth data. Biometrical Letters 43: 91–98.
  13. Yamamoto H., Iwashita T., Tomizawa S. (2007): Decomposition of symmetry into ordinal quasi-symmetry and marginal equimoment for multi-way tables. Austrian Journal of Statistics 36: 291–306.
DOI: https://doi.org/10.2478/bile-2021-0002 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 27 - 39
Published on: Jun 24, 2021
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Shuji Ando, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.