Agresti A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters 1: 313–316.10.1016/0167-7152(83)90051-2
Bagheban A.A., Zayeri,F. (2010): A generalization of the uniform association model for assessing rater agreement in ordinal scales. Journal of Applied Statistics 37: 1265–1273.10.1080/02664760903012666
Bowker A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.10.1080/01621459.1948.1048328418123073
Iki K., Tahata K., Tomizawa S. (2009): Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories. Austrian Journal of Statistics 38: 183–192.
Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42.
Tomizawa S. (1990): Another linear diagonals-parameter symmetry model for square contingency tables with ordered categories. South African Statistical Journal 24: 117–125.
Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: Application to decayed teeth data. Biometrical Letters 43: 91–98.
Yamamoto H., Iwashita T., Tomizawa S. (2007): Decomposition of symmetry into ordinal quasi-symmetry and marginal equimoment for multi-way tables. Austrian Journal of Statistics 36: 291–306.