Cléroux R., Lazraq A., Lepage Y.(1995): Vector correlation based on ranks and a nonparametric test of no association between vectors. Communications in Statistics Theory and Methods 24: 713–733.10.1080/03610929508831518
Gower J. (1966): Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.10.1093/biomet/53.3-4.325
Heller R., Heller Y., Gorfine M. (2013): A consistent multivariate test of association based on ranks of distances. Biometrika 100: 503–510.10.1093/biomet/ass070
Husson F., Josse J., Le S., Mazet J. (2013): FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. URL http://cran.r-project.org/package=FactoMineR, R package version 1.24.
Josse J., Pages J., Husson F. (2008): Testing the significance of rv coefficient. Computational Statistics and Data Analysis 53: 82–91.10.1016/j.csda.2008.06.012
Tjøstheim D., Hufthammer K. (2013): Local Gaussian correlation: a new measure of dependence. Journal of Econometrics 172(1): 33–48.10.1016/j.jeconom.2012.08.001
Reshef D., Reshef Y., Finucane H., Grossman S., McVean G., Turnbaugh P., Lander E., Mitzenmacher M., Sabeti P.C. (2011): Detecting novel associations in large data sets. Science 334: 1518–1524.10.1126/science.1205438332579122174245
Székely G.J., Rizzo M.L., Bakirov N.K. (2007): Measuring and testing independence by correlation of distances. Annals of Statistics 35: 2769–2794.10.1214/009053607000000505