Have a personal or library account? Click to login
D-optimal chemical balance weighing designs with diagonal covariance matrix of experimental errors Cover

D-optimal chemical balance weighing designs with diagonal covariance matrix of experimental errors

Open Access
|Jun 2020

References

  1. Banerjee K.S. (1975): Weighing Designs For Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York.
  2. Ceranka B., Graczyk M. (2014a): The problem of D–optimality in some experimental designs. International Journal of Mathematics and Computer Application Research 4: 11-18.
  3. Ceranka B., Graczyk M. (2014b): Construction of the regular D-optimal weighing designs with non-negative correlated errors. Colloquium Biometricum 44: 43-56.10.1080/03610926.2013.826365
  4. Ceranka B., Graczyk M. (2015): Relations between ternary designs and D-optimal weighing designs with non-negative correlated errors. Colloquium Biometricum 45: 23-34.
  5. Ceranka B., Graczyk M. (2017): Some D-optimal chemical balance weighing designs: theory and examples. Biometrical Letters 54(2): 137-154.10.1515/bile-2017-0008
  6. Cheng C.S. (1980): Optimality of some weighing and 2n fractional factorial designs. The Annals of Statistics 8: 436-446.10.1214/aos/1176344963
  7. Cheng C.S. (2014): Optimal biased weighing designs and two-level main-effect plans. Journal of Statistical Theory and Practice 8: 83-99.10.1080/15598608.2014.840520
  8. Cheng C.S., Kao M.H. (2015): Optimal experimental designs for fMRI via circulant biased weighing designs. The Annals of Statistics 43: 2565-2587.10.1214/15-AOS1352
  9. Graczyk M. (2013): Some applications of weighing designs. Biometrical Letters 50(1): 15-26.10.2478/bile-2013-0014
  10. Harville D.A. (1997): Matrix Algebra from Statistician’s Perspective. Springer-Verlag, New York Inc.10.1007/b98818
  11. Harwit M., Sloane N.J.A. (1979): Hadamard transform optics. New York, Acade-mic Press.
  12. Jacroux M., Wong C.S., Masaro J.C. (1983). On the optimality of chemical balance weighing designs. Journal of Statistical Planning and Inference 8: 231-240.
  13. Katulska K., Smaga Ł. (2013). A note on D-optimal chemical balance weighing designs and their applications. Colloquium Biometricum 43: 37-45.
  14. Katulska K., Przybył K. (2007): On certain D-optimal spring balance weighing designs. Journal of Statistical Theory and Practice 1, 393-404.10.1080/15598608.2007.10411848
  15. Masaro J., Wong Ch.S. (2008): D-optimal designs for correlated random vectors. Journal of Statistical Planning and Inference 138: 4093-4106.10.1016/j.jspi.2008.03.012
  16. Miutu S.O., Temitope A.O., Adekunle A.O., Joachim A.B., Olagoke A.S., Oluwaseun T.E., Oluwatoyin A. (2016): Application of Three-Factor Factorial Experimental Design with 8 Replicates per Cell: A study of Maize Yield. International Journal of Research 3(14), 620-642.
  17. Neubauer G.N., Pace R.G. (2010): D–optimal (0,1)–weighing designs for eight objects. Linear Algebra and its Applications 432: 2634-2657.10.1016/j.laa.2009.12.007
  18. Payne S.E. (1974): On maximizing det(ATA). Discrete Mathematics 10: 145-458.10.1016/0012-365X(74)90026-0
  19. Sathe Y.S., Shenoy R.G. (1990): Construction method for some A– and D–optimal weighing designs when N ≡ 0(mod 4). Journal of Statistical Planning and Inference 24: 369-375.10.1016/0378-3758(90)90056-Z
  20. Smaga Ł. (2014): Necessary and sufficient conditions in the problem of D–optimal weighing designs with autocorrelated errors. Statistics and Probability Letters 92: 12-16.10.1016/j.spl.2014.04.027
DOI: https://doi.org/10.2478/bile-2020-0004 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 37 - 52
Published on: Jun 12, 2020
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Małgorzata Graczyk, Bronisław Ceranka, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.