Carroll, J.D. (1968a): Generalization of canonical correlation analysis to three or more sets of variables. Proceedings of the 76th Annual Convention of the American Psychological Association 3:227–228.10.1037/e473742008-115
Carroll, J.D. (1968b): Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables. Unpublished companion paper to Carroll (1968a).10.1037/e473742008-115
Górecki, T., Krzyśko, M., Wołyński, W. (2017): Correlation analysis for multivariate functional data. Data Science, Studies in Classification, Data Analysis, and Knowledge Organization 243–258.10.1007/978-3-319-55723-6_19
Górecki, T., Krzyśko, M., Waszak, Ł., Wołyński, W. (2018): Selected statistical methods of data analysis for multivariate functional data. Statistical Papers 59(1): 153–182.10.1007/s00362-016-0757-8
Hwang, H., Jung, K., Takane, Y., Woodward, T.S. (2013): A unified approach to multiple-set canonical correlation analysis and principal components analysis. British Journal of Mathematical and Statistical Psychology 66: 308–321.10.1111/j.2044-8317.2012.02052.x22616692
Leurgans, S.E., Moyeed, R.A., Silverman, B.W. (1993): Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society. Series B 55(3): 725—740.10.1111/j.2517-6161.1993.tb01936.x
Löfstedt, T. Hadj-Selem, F., Guillemot, V., Philippe, C., Raymond, N., Duchesney, E., Frouin, V., Tenenhaus, A. (2018): A general multiblock method for structured variable selection. arXiv:1610.09490v1 [stat.ML]
Markos, A., D’enza, A.I. (2016): Incremental generalized canonical correlation analysis. Analysis of Large and Complex Data, Studies in Classification, Data Analysis, and Knowledge Organization: 185–194.10.1007/978-3-319-25226-1_16
Ramsay, J.O. Wickham, H., Graves, S., Hooker, G. (2018): fda: Functional Data Analysis. R package version 2.4.8. https://CRAN.R-project.org/package=fda
R Core Team (2019): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Tenenhaus, A., Guillemot, V. (2017a): RGCCA: Regularized and Sparse Generalized Canonical Correlation Analysis for Multiblock Data. R package version 2.1.2. https://CRAN.R-project.org/package=RGCCA
Tenenhaus, M., Tenenhaus, A., Groenen, P. (2017b): Regularized generalized canonical correlation analysis: A framework for sequential multiblock component methods. Psychometrika 82(3): 737–777.10.1007/s11336-017-9573-x28536930