Ambrose-Thomas P., Petersen E. (2013): Congenital toxoplasmosis: Scientific background, clinical management and control, Springer Science and Business Media.
Beretta E., Capasso V., Darao D.G. (2018): A mathematical model for malaria transmission with asymptomatic carriers in two age groups in humans, Mathematical Biosciences and Engineering 300: 87 – 101.10.1016/j.mbs.2018.03.024
Berretta E., Capasso V. (1986): On the general structure of epidemic systems: Global asymptotic stability, Computational Mathematics and Application, Part A 12: 677–694.10.1016/0898-1221(86)90054-4
Diekmann O., Hesterbeek J.A., Roberts M.G. (2010): Construction of next generation matrices for compartmental models in epidemics, Journal of the Royal Society of Biology, Interface 7: 875–885.10.1098/rsif.2009.0386
Esteva-Peralta L., Velasco-Hernandez J. X. (2002): M-Matrices and local stability in epidemic models Mathematical and Computer Modeling, 36: 491–501.10.1016/S0895-7177(02)00178-4
Fatmawati, Tasman H. (2016): An optimal treatment control of TB-HIV coinfection, International Journal of Mathematics and Mathematical Sciences, Article ID:8261208.10.1155/2016/8261208
Felicia B.N., Levine J.F., Stoskopf M.K. (2004): Reproductive capacity of free moving cats and kitten survival rate, Journal of American Veterinary Medical Association: 225(9): 1399–1402.10.2460/javma.2004.225.139915552315
Gimba B., Bala S.I. (2017): Modeling the impact of bed-net use and treatment on malaria transmission dynamics, International Scholarly Research Notices: 2017: 6182492.10.1155/2017/6182492
Gonzalez-Parra G.C., Arenas A.J., Aranda D.F., Villanova R.J., Jodar L. (2009): Dynamics of a model of toxoplasmosis disease in human and cat population Computer and Mathematics with Applications 57: 1692–1100.10.1016/j.camwa.2008.09.012
Gonzalez-Parra G.C., Arenas A.J., Nino R.J.V. (2010): Modeling toxoplasmosis spread in cat population under vaccination, Theoretical Population Biology 77: 227–237.10.1016/j.tpb.2010.03.005
Gumel A.B., Mukandavire Z., Garira W., Tchuenche J.M. (2009): Mathematical analysis of a model for hiv - malaria coinfection, Mathematical Biosciences and Engineer 6: 333 – 362.10.3934/mbe.2009.6.333
Mensah J., Dontwi J., Bonyah E. (2018): Stability analysis of zika - malaria coinfection model for malaria endemic region, Journal of Advances in Mathematics and Computer Science 26(1): 1–22.10.9734/JAMCS/2018/37229
Nyamongo W., Chimbari M., Mukaratirwa S. (2015): Malaria endemicity and coinfection with tissue dwelling parasites in sub-Saharan Africa: A review, Infectious Disease of Poverty, doi:10.1186/s40249-015-0070-0.10.1186/s40249-015-0070-0457107026377900
Okosun K.O., Makinde O.D. (2014): A coinfection model of malaria and cholera disease with optimal control, Mathematical Biosciences, 258: 19-32.10.1016/j.mbs.2014.09.008
Shahu B.K., Gupta M.M., Subuduch B. (2013): Stability analysis of non linear systems using dynamic Routh-Hurwitz criteria, International Conference on Advances in Computing, Communications and Informatics (ICACCI), August 25.10.1109/ICACCI.2013.6637448
Simon B., Akhwale W., Pullan R., Estambale B., Clarke S.E., Snow R.W., Hotez P.J. (2007): Epidemiology of plasmodium - helminth coinfection in Africa: Population at risk, potential impact on anaemia and prospects for combining control, American Journal of Tropical Medicine Hygiene 77: 88–98.10.4269/ajtmh.2007.77.88
Sullivan A. (2012): A mathematical model for within host toxoplasmosis godii invasion dynamics, Mathematical Biosciences and Engineering: 9(3).10.3934/mbe.2012.9.647
Traore B., Sangare B. (2018): A mathematical model of malaria transmission with structured vector population, Journal of Applied Mathematics, Article ID: 6754097.
Van den Driessche P., Watmough J. (2002): Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences and Engineering 180: 29–48.10.1016/S0025-5564(02)00108-6