Have a personal or library account? Click to login
On a new approach to the analysis of variance for experiments with orthogonal block structure. Cover

On a new approach to the analysis of variance for experiments with orthogonal block structure.

Open Access
|Dec 2018

References

  1. Bailey R.A. (1999): Choosing designs for nested blocks. Listy BiometryczneBiometrical Letters 36: 85-126.
  2. Brzeskwiniewicz H. (1994): Experiment with split-plot generated by PBIB designs. Biometrical Journal 36: 557-570.10.1002/bimj.4710360508
  3. Caliński T., Kageyama S. (2000): Block Designs: A Randomization Approach, Vol. I: Analysis. Lecture Notes in Statistics 150, Springer, New York.10.1007/978-1-4612-1192-1
  4. Caliński T., Kageyama S. (2003): Block Designs: A Randomization Approach, Vol. II: Design. Lecture Notes in Statistics 170, Springer, New York.10.1007/978-1-4419-9246-8
  5. Caliński T., Łacka A. (2014): On combining information in generally balanced nested block designs. Communications in StatisticsTheory and Methods 43: 954-974.10.1080/03610926.2013.841928
  6. Caliński T., Siatkowski I. (2017): On a new approach to the analysis of variance for experiments with orthogonal block structure. I. Experiments in proper block designs. Biometrical Letters 54: 91-122.10.1515/bile-2017-0006
  7. Ceranka B. (1983): Planning of experiments in C-designs. Scientific Dissertations 136, Annals of Poznań Agricultural University, Poland.
  8. Houtman A.M., Speed T.P. (1983): Balance in designed experiments with orthogonal block structure. Annals of Statistics 11: 1069-1085.10.1214/aos/1176346322
  9. Johnson N.L., Kotz S., Balakrishnan N. (1995): Continuous Univariate Distributions, Vol. 2, 2nd ed. Wiley, New York.
  10. Kala R. (2017): A new look at combining information in experiments with orthogonal block structure. Matrices, Statistics and Big Data: Proceedings of the IWMS-2016 (in press).
  11. Nelder J.A. (1965): The analysis of randomized experiments with orthogonal block structure. Proceedings of the Royal Society of London, Series A 283: 147-178.10.1098/rspa.1965.0012
  12. Nelder J.A. (1968): The combination of information in generally balanced designs. Journal of the Royal Statistical Society, Series B 30: 303-311.10.2307/2343525
  13. Raghavarao D., Padgett L.V. (2005): Block Designs: Analysis, Combinatorics and Applications. World Scientific Publishing Co., Singapore.10.1142/5846
  14. Rao C.R. (1971): Unified theory of linear estimation. Sankhyā, Series A 33: 371-394.
  15. Rao C.R. (1974): Projectors, generalized inverses and the BLUEs. Journal of the Royal Statistical Society, Series B 36: 442-448.10.1111/j.2517-6161.1974.tb01019.x
  16. Rao C.R., Kleffe J. (1988): Estimation of Variance Components and Applications. North-Holland, Amsterdam.
  17. Rao C.R., Mitra S.K. (1971): Generalized Inverse of Matrices and its Applications. Wiley, New York.
  18. R Core Team (2017): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  19. Volaufova J. (2009): Heteroscedastic ANOVA: old p values, new views. Statistical Papers 50: 943-962.10.1007/s00362-009-0262-4
  20. Yates F. (1939): The recovery of inter-block information in variety trials arranged in three-dimensional lattices. Annals of Eugenics 9: 136-156.10.1111/j.1469-1809.1939.tb02203.x
  21. Yates F. (1940): The recovery of inter-block information in balanced incomplete block designs. Annals of Eugenics 10: 317-325.10.1111/j.1469-1809.1940.tb02257.x
DOI: https://doi.org/10.2478/bile-2018-0011 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 147 - 178
Published on: Dec 14, 2018
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Tadeusz Caliński, Idzi Siatkowski, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.