Aastveit A.H., Mejza S. (1992): A selected bibliography on statistical methods for the analysis of genotype x environment interaction. Biuletyn Oceny Odmian, 24-25: 83-97.
Alimi N.A., Bink M.C.A.M., Dieleman J.A., Nicolai M., Wubs M., Heuvelink E., Magan J.J., Voorrips R.E., Jansen J., Rodrigues P.C., Vercauteren A., Vuylsteke M., Song Y., Glasbey C., Barocsi A., Lefebvre V., Palloix A., van Eeuwijk F.A. (2012): Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190: 181–201.10.1007/s10681-012-0767-0
Arciniegas-Alarcón S., García-Peña M., Krzanowski W.J., Dias C.T.S. (2014): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction: some new aspects. Biometrical Letters 51: 75-88.10.2478/bile-2014-0006
Arciniegas-Alarcón S., Peña M.G., Dias C.T.S., Krzanowski W.J. (2010): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction. Biometrical Letters 47: 1-14.
Annicchiarico P. (2009): Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli, S., E.P., G. & Weltzien, E. (eds.) Plant breeding and farmer participation. Rome: FAO.
Annicchiarico P. (2002): Genotype x Environment Interactions – Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Papers [Online].
Bertin N., Martre P., Genard M., Quilot B., Salon C. (2010): Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany 61: 955-967.10.1093/jxb/erp37720038518
Boer M.P., Wright D., Feng L.Z., Podlich D.W., Luo L., Cooper M., van Eeuwijk F.A. (2007): A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177: 1801-1813.10.1534/genetics.107.071068214794217947443
Chenu K., Chapman S.C., Tardieu F., Mclean G., Welcker C., Hammer G.L. (2009): Simulating the Yield Impacts of Organ-Level Quantitative Trait Loci Associated With Drought Response in Maize: A “Gene-to-Phenotype” Modeling Approach. Genetics 183: 1507-1523.10.1534/genetics.109.105429278743519786622
Chenu K., Chapman S.C., Hammer G.L., Mclean G., Salah H.B.H., Tardieu F. (2008): Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell and Environment 31: 378-391.10.1111/j.1365-3040.2007.01772.x18088328
Cooper M., Van Eeuwijk F.A., Hammer G.L., Podlich D.W., Messina C. (2009): Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology 12: 231-240.10.1016/j.pbi.2009.01.00619282235
Finlay K.W., Wilkinson G.N. (1963): Analysis of Adaptation in a Plant-Breeding Programme. Australian Journal of Agricultural Research 14: 742-754.10.1071/AR9630742
Gabriel K.R. (1971): Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 58: 453-467.10.1093/biomet/58.3.453
Gauch H.G., Rodrigues P.C., Munkvold J.D., Heffner E.L., Sorrells M. (2011): Two New Strategies for Detecting and Understanding QTL x Environment Interactions. Crop Science 51: 96-113.10.2135/cropsci2010.04.0206
Gauch H.G., Piepho H.P., Annicchiarico P. (2008): Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science 48: 866-889.10.2135/cropsci2007.09.0513
Gollob H.F. (1968): A Statistical Model Which Combines Features of Factor Analysis and Analysis of Variance Techniques. Psychometrika 33: 73-115.10.1007/BF022896765239571
Hongyu K., García-Peña M., Araújo L.B., Dias C.T.S. (2014): Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters 51: 89-102.10.2478/bile-2014-0007
Ishii T., Hayashi T., Yonezawa K. (2010): Categorization of Quantitative Trait Loci by Their Functional Roles: QTL Analysis for Chemical Concentration in Seed Grains. Crop Science 50: 784-793.10.2135/cropsci2009.01.0015
Josse J., van Eeuwijk F., Piepho H.-P., Denis J.B. (2014): Another look at Bayesian analysis of AMMI models for genotype-environment data. Journal of Agricultural, Biological, and Environmental Statistics 19: 240-257.10.1007/s13253-014-0168-z
Letort V., Mahe P., Cournede P.H., De Reffye P., Courtois B. (2008): Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany 101: 1243-1254.10.1093/aob/mcm197271026517766844
Malosetti M., Ribaut J.M., van Eeuwijk F.A. (2010): The analysis of multi-environment data: modeling genotype by environment and QTL by environment interaction. In: Monneveux P. & Ribaut J.M. (eds.) Drought phenotyping in crops: from theory to practice.
Malosetti M., Voltas J., Romagosa I., Ullrich S.E., van Eeuwijk F.A. (2004): Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137: 139-145.10.1023/B:EUPH.0000040511.46388.ef
Mandel J. (1969): Partitioning of Interaction in Analysis of Variance. Journal of Research of the National Bureau of Standards Section B-Mathematical Sciences B 73: 309-&.10.6028/jres.073B.031
Paderewski J., Rodrigues P.C. (2014): The usefulness of EM-AMMI to study the influence of missing data pattern and application to Polish post-registration winter wheat data. Australian Journal of Crop Science 8: 640–645.
Pereira D., Rodrigues P.C., Mejza S., Mexia J.T. (2012a): A comparison between Joint Regression Analysis and the AMMI model: a case study with barley. Journal of Statistical Computation and Simulation 82: 193-207.10.1080/00949655.2011.615839
Pereira D., Rodrigues P.C., Mejza I., Mejza S., Mexia J.T. (2012b): Analyzing genotypes by environment interaction by curvilinear regression. Scientia Agricola 69: 357-363.10.1590/S0103-90162012000600003
Quilot B., Genard M., Lescourret F., Kervella J. (2005): Simulating genotypic variation of fruit quality in an advanced peach x Prunus davidiana cross. Journal of Experimental Botany 56: 3071-3081.10.1093/jxb/eri30416234284
Reymond M., Muller B., Tardieu F. (2004): Dealing with the genotypexenvironment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Journal of Experimental Botany 55: 2461-2472.10.1093/jxb/erh20015286140
Reymond M., Muller B., Leonardi A., Charcosset A., Tardieu F. (2003): Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131: 664-675.10.1104/pp.01383916684212586890
Rodrigues P.C., Monteiro A., Lourenço V.M. (2016): A robust additive main effects and multiplicative interaction model for the analysis of genotype-by-environment data. Bioinformatics 32: 58-66.10.1093/bioinformatics/btv533
Rodrigues P.C., Malosetti M., Gauch H.G., van Eeuwijk F.A. (2014): A weighted AMMI algorithm to study genotype-by-environment interaction and QTL-by-environment interaction. Crop Science 54: 1555-1570.10.2135/cropsci2013.07.0462
Rodrigues P.C. (2012): New strategies to detect and understand genotype-by-environment interactions and QTL-by-environment interactions. PhD Thesis, Faculty of Sciences and Technology, Nova University of Lisbon, Lisboa, Portugal.
Rodrigues P.C., Pereira D.G., Mexia J.T. (2011): A comparison between JRA and AMMI: the robustness with increasing amounts of missing data. Scientia Agricola 68: 679-686.10.1590/S0103-90162011000600012
Romagosa I., van Eeuwijk F.A., Thomas W.T.B. (2009): Statistical analyses of genotype by environment data. In: Carena M.J. (ed.) Cereals. Springer, New York: 291-331.10.1007/978-0-387-72297-9_10
Romagosa I., Ullrich S.E., Han F., Hayes P.M. (1996): Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theoretical and Applied Genetics 93: 30-37.10.1007/BF00225723
Tardieu F. (2003): Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science 8: 9-14.10.1016/S1360-1385(02)00008-0
van Eeuwijk F.A., Bustos-Kortsa D.V., Malosetti M. (2016): What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? Crop Science 56: 2119-2140.10.2135/cropsci2015.06.0375
van Eeuwijk F.A., Bink M.C.A.M., Chenu K., Chapman S.C. (2010): Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology 13: 193-205.10.1016/j.pbi.2010.01.001
van Eeuwijk F.A., Malosetti M., Yin X.Y., Struik P.C., Stam P. (2005): Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research 56: 883-894.10.1071/AR05153
van Eeuwijk F.A., Denis J. B., Kang M.S. (1996): Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang M.S. & Gauch H.G. (eds.) Genotype by Environment Interaction: New Perspectives. Boca Raton: CRC Press.10.1201/9781420049374.ch2
van Eeuwijk F.A. (1995): Linear and Bilinear Models for the Analysis of Multi-Environment Trials. 1. An Inventory of Models. Euphytica 84: 1-7.10.1007/BF01677551
van Ittersum M.K., Leffelaar P.A., van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. (2003): On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18: 201-234.10.1016/S1161-0301(02)00106-5
Yan W., Kang M.S. (2003): GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists, Boca Raton, Fla., CRC Press.10.1201/9781420040371
Yan W., Kang M.S. (2002): GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists, Boca Raton, Florida, CRC Press.10.1201/9781420040371
Yang R.C., Crossa J., Cornelius P.L., Burgueno J. (2009): Biplot Analysis of Genotype x Environment Interaction: Proceed with Caution. Crop Science 49: 1564-1576.10.2135/cropsci2008.11.0665