Annicchiarico P. (1997): Additive Main Effects and Multiplicative Interaction (AMMI) Analysis of Genotype-location Interaction in Variety Trials Repeated over Years. Teor. Appl. Genet. 94: 1072-1077.10.1007/s001220050517
Akbarpour O., Dehghani H., Sorkhi B., Gauch Jr. H.G. (2014): Evaluation of Genotype × Environment Interaction in Barley (Hordeum Vulgare L.) Based on AMMI model Using Developed SAS Program. J. Agr. Sci. Tech. 16: 909-920.
Camargo-Buitrago I., Intire E.Q.M., Gorddón-Mendoza R., (2011): Identificación de mega-ambientes para potenciar el uso de genótipos superiores de arroz em Panamá. Pesquisa Agropecuária Brasileira 46(9): 1061-1069.10.1590/S0100-204X2011000900013
Datta S., Datta S. (2003): Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19(4): 459-466.10.1093/bioinformatics/btg02512611800
Gabriel K.R. (1971): The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3): 453-467.10.1093/biomet/58.3.453
Gauch H.G., Zobel R.W. (1996): AMMI analysis in yield trials. KANG, M. S., GAUCH, H. G. (Ed) Genotype by environment interaction. New York: CRC Press: 416-428.10.1201/9781420049374
Gollob H.F. (1968): A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73-115.10.1007/BF022896765239571
Hongyu K., Silva F.L., Oliveira A.C.S., Sarti D.A, Araújo L.C., Dias C.T.S. (2015): Comparação entre os modelos AMMI e GGE Biplot para os dados de ensaios multi-ambientais. Rev. Bras. Biom., São Paulo 33(2): 139-155.
Kang M.S. (2002): Genotype-environment Interaction: Progress and Prospects. In: “Quantitative Genetics, Genomics and Plant Breeding”. CAB International, Wallingford, England: 221-243.10.1079/9780851996011.0221
Kaufman L., Rousseeuw P. (1990): Partitioning around medoids (program pam). Finding groups in data: an introduction to cluster analysis: 68-125.10.1002/9780470316801.ch2
Neisse A.C., Hongyu K. (2016): Application of Principal Components and Factor Analysis to Crime Data From 26 US States. Pesq. agropec. bras., Brasília 44(1): 45-50.
R DEVELOPMENT CORE TEAM (2017): R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.
Rodrigues P.C., Malosetti M., Gauch H. G., Van Eeuwijk F.A. (2014): A weighted AMMI algorithm to study genotype-by-environment interaction and QTLby-environment interaction. Crop Science 54(4) : 1555-1570.10.2135/cropsci2013.07.0462
Xu R., Wunsch D.C. (2008): Recent advances in cluster analysis. International Journal of Intelligent Computing and Cybernetics 1(4) : 484-508.10.1108/17563780810919087
Yan W., Hunt L.A., Sheng Q., Szlavnics Z. (2000): Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40(3) : 597-605.10.2135/cropsci2000.403597x
Yan W., Kang M.S. (2003): G GE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL, USA, 271p.10.1201/9781420040371
Yan W., Tinker N.A. (2005): An Integrated Biplot Analysis System for Displaying, Interpreting, and Exploring Genotype × Environment Interaction. Crop Science 45 : 1004-1016.10.2135/cropsci2004.0076
Yan W., Tinker N.A. (2006): Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86(3) : 623-645.10.4141/P05-169
Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L. (2007): GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47 : 643-655.10.2135/cropsci2006.06.0374
Yan W. (2011): GGE Biplot vs. AMMI Graphs for the Genotype-by-Environment Data Analysis. Journal of the Indian Society of Agricultural Statistics 65(2): 181-193.