Cooper M., Woodruff D.R., Eisemann R.L., Brennan P.S., DeLacy I.H. (1995): A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat: managed-environments for selection among genotype. Theor. Appl. Genet. 90: 492-502.10.1007/BF0022199524173943
Costa R.B., de Resende M.D.V, de Araujo A.J., Gonçalves P.S., Martimns A.L.M. (2000): Genotype-environment interaction and the number of test sites for the genetic improvement of rubber trees (Hevea) in São Paulo State, Brazil. Gen. Mol. Biol. 23:179-187.10.1590/S1415-47572000000100033
Fan L.J., Hu B.M., Shi C.H., Wu J.G. (2001): A method of choosing locations based on genotype ´ environment interaction for regional trials of rice. Plant Breeding. 120: 139-142.10.1046/j.1439-0523.2001.00564.x
Kandus M., Almorza D., Boggio Ronceros R., Salerno J.C. (2010): Statistical models for evaluating the genotype-environment interaction in maize (Zea mays L.). FYTON. 79: 39-46.10.32604/phyton.2010.79.039
Khan H., Rehman H.U., Bakht J., Khan S.A., Hussain I., Khan A., Ali S. (2013): Genotype × environment interaction and heritability estimates for some agronomic characters in sunflower. J. Anim. Plant. Sci. 23: 1177-1184.
Khattree R., Naik D.N. (2002): Association in contingency tables, correspondence analysis and (modified) Andrews plots. In: Huber-Carol, C., N. Balakrishnan, M.S.10.1007/978-1-4612-0103-8_23
Kivuva B.M., Githiri S.M., Yencho G.C., Sibiya J. (2014): Genotype x environment interaction for storage root yield in sweet potato under managed drought stress conditions. J. Agr. Sci. 6: 41-56.10.5539/jas.v6n10p41
Lin C.S., Binns M.R. (1985): Procedural approach for assessing cultivar location data: pairwise genotype-environment interactions of test cultivars with checks. Can. J. Plant Sci. 65: 1065-1071.10.4141/cjps85-136
Mądry W., Mańkowski D., Kaczmarek Z., Krajewski P., Studnicki M. (2010): Statistical methods based on linear models in applications for experimentation, genetics and plant breeding (in Polish). IHAR Państwowy Instytut Badawczy Radzików. Radzików, Poland.
Mehari M., Alamerew S., Lakew B. (2014): Genotype × environment interaction and yield stability of malt barley genotypes evaluated in Tigray, Ethiopia using the AMMI analysis. Asian. J. Plant. Sci. 13: 73-79.10.3923/ajps.2014.73.79
Mohammadi R., Farshadfar E., Amri A. (2015): Interpreting genotype x environment interaction for grain yield of rainfed durum wheat in Iran. The Crop Journal. 3: 526-535.10.1016/j.cj.2015.08.003
Pilarczyk W., Bakinowska E., Bocianowski J., Zawieja B. (2010): Optimization of preliminary plant breeding trials with spring barley (in Polish). Biuletyn IHAR. 255: 13-26.10.37317/biul-2010-0044
Sayar M.S., Anlarsal A.M., Basbag M. (2013): Genotype-environment interactions and stability analysis for dry-matter yield and seed yield in Hungarian vetch (vicia pannonica crantz.). Turk. J. Field. Crops. 18: 238-246.
Tumuhimbise R., Melis R., Shanahan P., Kawuki R. (2014): Genotype x environment interaction effects on early fresh storage root yield and related traits in cassava. The Crop Journal. 2: 329-337.10.1016/j.cj.2014.04.008
Yildirim M., Çaliskan C.F. (1985): Genotype x environment interactions in potato (Solanum tuberosum L.) Amer. Potato. J. 62: 371-375.10.1007/BF02855608
Zečević V., Knežević D., Bošković J., Madić M. (2009): Effect of genotype and environment on wheat quality. Genetika. 41: 247-253.10.2298/GENSR0903247Z
Zhe Y., Lauer J.G., Borges R., de Leon N. (2010): Effects of genotype × environment interaction on agronomic traits in soybean. Crop Sci. 50: 696-702.10.2135/cropsci2008.12.0742