Abrego B., Fernandez-Merchant S., Neubauer G.N., Watkins W. (2003): D-optimal weighing designs for n = -1mod4 objects and a large number of weighings. Linear Algebra and its Applications 374: 175-218.10.1016/S0024-3795(03)00614-1
Ceranka B., Graczyk M. (2004): A-optimal chemical balance weighing design. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Mathematica 15: 41-54.
Ceranka B., Graczyk M., Katulska K. (2006): A-optimal chemical balance weighing design with nonhomogeneity of variances of errors. Statistics and Probability Letters 76: 653 - 66510.1016/j.spl.2005.09.012
Ceranka B., Graczyk M., Katulska K. (2007): On certain A-optimal chemical balance weighing designs. Computational Statistics and Data Analysis 51: 5821-5827.10.1016/j.csda.2006.10.021
Ceranka B., Katulska K. (2001): A-optimal chemical balance weighing design with diagonal covariance matrix of errors. Moda 6, Advances in Model Oriented Design and Analysis, A.C. Atkinson, P. Hackl, W.G. Mffller, eds., Physica-Verlag, Heidelberg, New York, 29-36. Chadjiconstantinidis S., Chadjipadelis T. (1994): A construction method of new D-A-optimal designs when N = 3mod4 and к < N-1. Discrete Mathematics 131: 39-50.
Graczyk M. (2012a): Notes about A-optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781-784.10.1016/j.jspi.2011.11.008
Kageyama S., Saha G.M. (1983): Note on the construction of optimum chemical balance weighing designs. Ann. Inst. Statist. Mat. 35A: 447-452.10.1007/BF02481001
Neubauer G.N., Pace R.G. (2010): D-optimal (0,1)-weighing designs for eight objects. Linear Algebra and its Applications 432: 2634-2657.10.1016/j.laa.2009.12.007