Have a personal or library account? Click to login
Detection of outlying observations using the Akaike information criterion Cover

Detection of outlying observations using the Akaike information criterion

Open Access
|Dec 2013

References

  1. Akaike H. (1973): Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, eds. B.N. Petrv and F. Csaki, Budapest; Akademiai Kiado: 267-281.
  2. Akaike H. (1977): On entropy maximization principle. Proc Symposium on Applications of Statistics, ed. P.R. Krishnaiah, Amsterdam: North Holland: 27-47. Barnett V., Lewis T. (1993): Outliers in Statistical Data. John Wiley & Sons.
  3. Breuning M., Kriegel H.P, Sander J. (2000): LOF: Identifying Density-Based Local Outliers. In: Proceedings of the ACM SIGMOND Conference: 93-104.10.1145/335191.335388
  4. David H.A. (1979): Pariadkowyje statistiki. Mockba Nauka.
  5. Dzida K., Jarosz Z., Michalojć Z. (2011): The effect of diversified potassium fertilization on the field and chemical composition on Beta Vulgaris L. Acta Sci. Pol. Hortus. Cultus 10(40): 263-274.
  6. Ellenberg J.H. (1976): Testing for a single outlier from a general linear regression. Biometrics 32: 637-645.10.2307/2529752
  7. Ferguson T.S. (1961): On the rejection of outliers. In Proc. Fourth Berkeley Symposium Math. Statist. Prob.1: 253-287.
  8. Galpin J.S., Hawkins D.M. (1981): Rejection of a single outlier in two or three-way layouts. Technometrics 23: 65-70.10.2307/1267977
  9. Grubbs F.E. (1950): Sample criteria for testing outlying observations. Ann. Math. Statist. 21: 27-58.
  10. Grubbs F.E. (1969): Procedures for detecting outlying observations in samples. Technometrics 11: 1-21.10.1080/00401706.1969.10490657
  11. Joshi P.C. (1972): Some slippage tests of mean for a single outlier in linear regression. Biometrika 59: 109-120.10.1093/biomet/59.1.109
  12. Karlin S., Traux D. (1960): Slippage problems. Ann. Math. Statist 31: 296-324.
  13. Pan J.X., Fang K.T. (1995): Multiple outlier detection in growth curve model with unstructured covariance matrix. Ann. Inst. Statist. Math. 47: 137-153.
  14. Ramaswamy S., Rastogi R., Shim K. (2000): Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM SIGMOND Conference on Management of data. Dallas: 427-438.10.1145/335191.335437
  15. Rosseuw P., Leroy A. (2000): Robust Regression and Outlier Detection. John Wiley & Sons.
  16. Sakamoto Y., Ishigura M. (1986): Akaike Information Criterion Statistics. Tokyo Reidel Publishing Company.
  17. Schwager S.J., Margolin B.H. (1982): Detection of multivariate normal outliers. Ann. Statist. 10: 943-954.10.1214/aos/1176345884
  18. Srivastava M.S., Von Rosen D. (1998): Outliers in Multivariate Regression Models. J. Mult. Anal. 65: 195-208.
  19. Stefansky W. (1972): Rejecting outliers in factorial designs. Technometrics 14: 469-479 10.1080/00401706.1972.10488930
  20. Tietjen G.L., Moore R.H. (1972): Some Grubbs-type statistics for the detection of several outliers. Technometrics 14: 583-597.10.1080/00401706.1972.10488948
  21. Wilks S.S. (1963): Multivariate statistical outliers. Sankhya A. 25: 406-427.
DOI: https://doi.org/10.2478/bile-2013-0022 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 117 - 126
Published on: Dec 10, 2013
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Andrzej Kornacki, published by Polish Biometric Society
This work is licensed under the Creative Commons License.

Volume 50 (2013): Issue 2 (December 2013)