Bacelar-Nicolau H. (1987): On the Distribution Equivalence in Cluster Analysis, Proc. of the NATO ASI on Pattern Recognition Theory and Applications, Springer- Verlag, New York, 1987: 73-79.10.1007/978-3-642-83069-3_7
Bacelar-Nicolau H. (1988): Two Probabilistic Models for Classification of Variables in Frequency Tables. In: Classification and Related Methods of Data Analysis, H.-H. Bock (ed.), North Holland: Elsevier Sciences Publishers B.V.: 181-186.
Bacelar-Nicolau H. (2000): The Affinity Coefficient. In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 160-165.
Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2009): Measuring Similarity of Complex and Heterogeneous Data in Clustering of Large Data Sets, Biocybernetics and Biomedical Engineering 29(2): 9-18.
Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2010): Clustering Complex Heterogeneous Data Using a Probabilistic Approach. Proceedings of Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2010), Chania Crete Greece, 8-11 June 2010 - published on the CD Proceedings of SMTDA2010 (electronic publication).
Bock H.-H., Diday E. (2000): Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Series: Studies in Classification, Data Analysis, and Knowledge Organization, Berlin: Springer- Verlag.10.1007/978-3-642-57155-8
Chavent M., Lechevallier Y. (2002): Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: Classification, Clustering, and Data Analysis, K. Jajuga, A. Sokolowski, H.-H. Bock (Eds.), Berlin: Springer-Verlag: 53-60.10.1007/978-3-642-56181-8_5
Chavent M., De Carvalho F.A.T., Lechevallier Y., Verde R. (2003): Trois Nouvelles Méthodes de Classification Automatique de Données Symboliques de type intervalle, Revue de Statistique Appliquée, tome 51(4): 5-29.
De Carvalho F.A.T., Brito P., Bock H-H. (2006a): Dynamic Clustering for Interval Data Based on L2 Distance. Computational Statistics 21(2).10.1007/s00180-006-0261-z
De Carvalho F.A.T., Souza R.M.C.R. de, Chavent M., Lechevallier Y. (2006b): Adaptive Hausorff Distances and Dynamic Clustering of Symbolic Interval Data. Pattern Recognition Letters 27(3).10.1016/j.patrec.2005.08.014
Esposito F., Malerba D., Tamma V. (2000): Dissimilarity Measures for Symbolic Objects, In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 165-185.
Lerman I.C. (1972): Étude Distributionelle de Statistiques de Proximité entre Structures Algébriques Finies du Même Type: Apllication à la Classification Automatique. Cahiers du B.U.R.O., 19, Paris.
Nicolau F.C.m, Bacelar-Nicolau H. (1998): Some Trends in the Classification of Variables. In: Data Science, Classification, and Related Methods, C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, Y. Baba (Eds.), Springer-Verlag: 89-98.
Souza R.M.C.R. de, De Carvalho F.A.T. (2004): Clustering of interval data Based on City-Block distances, Pattern Recognition Letters 25: 353-365.10.1016/j.patrec.2003.10.016