Have a personal or library account? Click to login
The use of information and information gain in the analysis of attribute dependencies Cover

The use of information and information gain in the analysis of attribute dependencies

Open Access
|Aug 2013

References

  1. Bezzi M. (2007): Quantifying the information transmitted in a single stimulus. Biosystems, 89: 4-9.10.1016/j.biosystems.2006.04.00917296260
  2. Brunsell N.A. (2010): A multiscale information theory approach to assess spatial- temporal variability of daily precipitation. Journal of Hydrology 385: 165-172.10.1016/j.jhydrol.2010.02.016
  3. Jakulin A. (2005). Machine learning based on attribute informations. PhD Dissertation. University of Ljubljana.
  4. Jakulin A., Bratko I., Smrke D., Demsar J., Zupan B. (2003): Attribute interactions in medical data analysis. In: 9th Conference on Artificial Intelligence in Medicine in Europe (AIME 2003), October 18-22, (2003), Protaras, Cyprus.
  5. Jakulin A., Bratko I. (2003): Analyzing attribute dependencies. In: 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003), September 22-26, Cavtat, Croatia.10.1007/978-3-540-39804-2_22
  6. Jakulin A., Bratko I. (2004a): Quantifying and visualizing attribute interactions: an approach based on entropy. http://arxiv.org/abs/cs.AI/0308002v3.
  7. Jakulin A., Bratko I. (2004b): Testing the significance of attribute interaction. Proc. 21st International Conference on Machine Learning. Banff, Canada.10.1145/1015330.1015377
  8. Kang G., Yue W., Zhang J., Cui Y., Zuo Y., Zhang D. (2008): An entropy-based approach for testing genetic epistasis underlying complex diseases. Journal of Theoretical Biology 250: 362-374.10.1016/j.jtbi.2007.10.00117996908
  9. Kullback S., Leibler R.A. (1951): On information and sufficiency. Annals of Mathematical Statistics 22(1): 79-86.10.1214/aoms/1177729694
  10. Matsuda H. (2000): Physical nature of higher-order mutual information. Intrinsic correlation and frustration. Physical Review E, 62: 3096-3102.10.1103/PhysRevE.62.3096
  11. McGill W.J. (1954): Multivariate information transmission. Psychometrika 19(2): 97-116.10.1007/BF02289159
  12. Moniz L.J., Cooch E.G., Ellner S.P., Nichols J.D., Nichols J.M. (2007): Application of information theory methods to food web reconstruction. Ecological Modeling 208: 145-158.10.1016/j.ecolmodel.2007.05.016
  13. Moore J.H., Gilbert J.C., Tsai C.-T., Chiang F.-T., Holden T., Barney N., White B.C. (2006): A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology 241: 252-261.10.1016/j.jtbi.2005.11.03616457852
  14. Rajski C. (1961): A metric space of discrete probability distributions. Information and Control 4: 373-377.10.1016/S0019-9958(61)80055-7
  15. Shannon C. (1948): A mathematical theory of communication. Bell System Technical Journal 27: 379-423, 623-656.10.1002/j.1538-7305.1948.tb00917.x
  16. Yan Z. Wang Z., Xie H. (2008): The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Computer Methods and Programs in Biomedicine 90: 275-284.10.1016/j.cmpb.2008.01.00318295367
DOI: https://doi.org/10.2478/bile-2013-0011 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 149 - 158
Published on: Aug 17, 2013
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Krzysztof Moliński, Anita Dobek, Kamila Tomaszyk, published by Polish Biometric Society
This work is licensed under the Creative Commons License.