Baksalary J.K., Puntanen S. (1990): Characterizations of the best linear unbiased estimator in the general Gauss-Markov model with the use of matrix partial orderings. Linear Algebra and its Applications 127: 363-370.10.1016/0024-3795(90)90349-H
Caliński T. (1996): The basic contrasts of a block design with special reference to the recovery of inter-block information. In: A. Pázman and V. Witkovský (eds.), Tatra Mountains Mathematical Publications, Vol. 7: PROBASTAT' 94 Smolenice. Mathematical Institute, Bratislava, pp. 23-37.
Houtman A.M., Speed, T.P. (2008): Balance in designed experiments with orthogonal block structure Annals of Statistics 11: 1069-1085.10.1214/aos/1176346322
Hinkelmann K., Kempthorne O. (2008): Design and Analysis of Experiments Volume I: Introduction to Experimental Design 2nd ed. Wiley, Hoboken, New Jersey.
Jones R.M. (1959): On a property of incomplete blocks. Journal of the Royal Statistical Society, Series B 21: 172-179.10.1111/j.2517-6161.1959.tb00326.x
Kala R. (1991): Elements of the randomization theory. III. Randomization in block experiments. Listy Biometryczne|Biometrical Letters 28: 3-23 (in Polish).
Martin F.B., Zyskind G. (1966): On combinability of information from uncorrelated linear models by simple weighting. Annals of Mathematical Statistics 37: 1338-1347.10.1214/aoms/1177699278
Nelder J.A. (1968): The combination of information in generally balanced designs. Journal of the Royal Statistical Society, Series B 30: 303-311.10.2307/2343525
Neyman J. (with cooperation of K. Iwaszkiewicz and S. Ko lodziejczyk) (1935): Statistical problems in agricultural experimentation (with discussion). Journal of the Royal Statistical Society, Supplement 2: 107-180.10.2307/2983637
Ogawa J. (1961): The e ect of randomization on the analysis of randomized block design. Annals of the Institute of Statistical Mathematics 13: 105-117.10.1007/BF02868863
Ogawa J. (1963): On the null-distribution of the F-statistic in a randomized balanced incomplete block design under the Neyman model. Annals of Mathematical Statistics 34: 1558-1568.10.1214/aoms/1177703888
Oktaba W. (1989): F-tests for hypotheses with block matrices and under conditions of orthogonality in the general multivariate Gauss-Markov model. Biometrical Journal 31: 317-323.10.1002/bimj.4710310310
Oktaba W. (1998): Characterization of the multivariate Gauss-Markov model with singular covariance matrix. Applications of Mathematics 43: 119-131.10.1023/A:1023215001376
Oktaba W. (2003): The general multivariate Gauss-Markov model of the incomplete block design. Australian & New Zealand Journal of Statistics 45: 195-205.10.1111/1467-842X.00275
Oktaba W., Kornacki A., Wawrzosek J. (1986): Estimation of missing values in the general Gauss-Markov model. Statistics 17: 167-177.10.1080/02331888608801923
Oktaba W., Kornacki A., Wawrzosek J. (1988): Invariant linearly suficient transformations of the general Gauss-Marko model. Estimation and testing. Scandinavian Journal of Statistics 17: 117-124.
Pearce S.C., Caliński T., Marshall T.F. de C. (1974): The basic contrasts of an experimental design with special reference to the analysis of data. Biometrika 61: 449-460.10.1093/biomet/61.3.449
Rao C.R. (1959): Expected values of mean squares in the analysis of incomplete block experiments and some comments based on them. Sankhy~a 21: 327-336.
Shah K.R. (1992): Recovery of interblock information: An update. Journal of Statistical Planning and Inference 30: 163-172.10.1016/0378-3758(92)90078-7
Yates F. (1939): The recovery of inter-block information in variety trials arranged in three-dimensional lattices. Annals of Eugenics 9: 136-156.10.1111/j.1469-1809.1939.tb02203.x
Yates F. (1940): The recovery of inter-block information in balanced incomplete block designs. Annals of Eugenics 10: 317-325.10.1111/j.1469-1809.1940.tb02257.x
Zyskind G. (1967): On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. Annals of Mathematical Statistics 38: 1092-1109. 10.1214/aoms/1177698779