References
- Abueid, S. (2024). Blood-Flow Restriction Walking: Effects on Insulin Sensitivity and Aerobic Capacity in Type 2 Diabetes. https://doi.org/10.61186/aassjournal.1477
- Amani-Shalamzari, S., Rajabi, S., Rajabi, H., Gahreman, D. E., Paton, C., Bayati, M., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00810
- Bielitzki, R., Behrendt, T., Behrens, M., & Schega, L. (2021). Current Techniques Used for Practical Blood Flow Restriction Training: A Systematic Review. Journal of Strength and Conditioning Research, 35(10), 2936–2951. https://doi.org/10.1519/JSC.0000000000004104
- Chen, H., Huang, X., Dong, M., Wen, S., Zhou, L., & Yuan, X. (2023). The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity, Volume 16, 1541–1554. https://doi.org/10.2147/DMSO.S410834
- Cho, C., & Lee, S. (2024). The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. International Journal of Molecular Sciences, 25(17), 9274. https://doi.org/10.3390/ijms25179274
- Christiansen, D., Eibye, K. H., Hostrup, M., & Bangsbo, J. (2019). Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism, 98, 1–15. https://doi.org/10.1016/j.metabol.2019.06.003
- Christiansen, D., Eibye, K., Hostrup, M., & Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. The Journal of Physiology, 598(12), 2337–2353. https://doi.org/10.1113/JP279554
- Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728
- Dremin, V., Volkov, M., Margaryants, N., Myalitsin, D., Rafailov, E., & Dunaev, A. (2025). Blood flow dynamics in the arterial and venous parts of the capillary. Journal of Biomechanics, 179, 112482. https://doi.org/10.1016/j.jbiomech.2024.112482
- Early, K. S., Rockhill, M., Bryan, A., Tyo, B., Buuck, D., & McGinty, J. (2020). Effect of blood flow restriction training on muscular performance, pain and vascular function. International Journal of Sports Physical Therapy, 15(6), 892–900. https://doi.org/10.26603/ijspt20200892
- Fini, E. M., Motefakker, M., Ahmadizad, S., Salimian, M., & Andani, F. M. (2023). Responses of Hemodynamic and Hematological Changes to Resistance Exercise with and Without Blood Flow Restriction in Patients with Type 2 Diabetic. 2(30), 284–300.
- Fini, E. M., Salimian, M., & Ahmadizad, S. (2022). Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation, 80(3), 281–289. https://doi.org/10.3233/CH-211229
- Giles, L., Webster, K. E., McClelland, J., & Cook, J. L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. British Journal of Sports Medicine, 51(23), 1688–1694. https://doi.org/10.1136/bjsports-2016-096329
- Groen, B. B. L., Hamer, H. M., Snijders, T., van Kranenburg, J., Frijns, D., Vink, H., & van Loon, L. J. C. (2014). Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. Journal of Applied Physiology, 116(8), 998–1005. https://doi.org/10.1152/japplphysiol.00919.2013
- Hedt, C., McCulloch, P. C., Harris, J. D., & Lambert, B. S. (2022). Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthroscopy, Sports Medicine, and Rehabilitation, 4(1), e51–e63. https://doi.org/10.1016/j.asmr.2021.09.024
- Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E. L., Cesari, M., Chen, L.-K., de Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R. A., García-Hermoso, A., Gutiérrez-Robledo, L. M., Harridge, S. D. R., Kirk, B., … Singh, M. F. (2021). International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. The Journal of Nutrition, Health and Aging, 25(7), 824–853. https://doi.org/10.1007/s12603-021-1665-8
- Jarosz, J., Trybulski, R., Krzysztofik, M., Tsoukos, A., Filip-Stachnik, A., Zajac, A., Bogdanis, G. C., & Wilk, M. (2021). The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715096
- Jones, M. T., Aguiar, E. J., & Winchester, L. J. (2021). Proposed Mechanisms of Blood Flow Restriction Exercise for the Improvement of Type 1 Diabetes Pathologies. In Diabetology (Vol. 2, Issue 4, pp. 176–189). MDPI. https://doi.org/10.3390/diabetology2040016
- Joyner, M. J., & Casey, D. P. (2015). Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013
- Klein, S., Gastaldelli, A., Yki-Järvinen, H., & Scherer, P. E. (2022). Why does obesity cause diabetes? Cell Metabolism, 34(1), 11–20. https://doi.org/10.1016/j.cmet.2021.12.012
- Koutny, T. (2013). Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues. Computers in Biology and Medicine, 43(11), 1680–1686. https://doi.org/10.1016/j.compbiomed.2013.08.008
- Lee, S.-H., Park, S.-Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280
- Li, S., Li, S., Wang, L., Quan, H., Yu, W., Li, T., & Li, W. (2022). The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.814965
- Lopez-Pedrosa, J. M., Camprubi-Robles, M., Guzman-Rolo, G., Lopez-Gonzalez, A., Garcia-Almeida, J. M., Sanz-Paris, A., & Rueda, R. (2024). The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients, 16(1), 172. https://doi.org/10.3390/nu16010172
- Lorenz, D. S., Bailey, L., Wilk, K. E., Mangine, R. E., Head, P., Grindstaff, T. L., & Morrison, S. (2021). Blood Flow Restriction Training. Journal of Athletic Training, 56(9), 937–944. https://doi.org/10.4085/418-20
- Ma, X., Ai, Y., Lei, F., Tang, X., Li, Q., Huang, Y., Zhan, Y., Mao, Q., Wang, L., Lei, F., Yi, Q., Yang, F., Yin, X., He, B., Zhou, L., & Ruan, S. (2024). Effect of blood flow-restrictive resistance training on metabolic disorder and body composition in older adults with type 2 diabetes: a randomized controlled study. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1409267
- Martins, A., José Brandão de Albuquerque Filho, N., Gonçalves Assis, M., Sabino de Queiros, V., Wagner da Silva Rodrigues, A., Samara Batista dos Santos, E., Guilherme de Araújo Tinôco Cabral, B., Cesar Gomes da Silva, J., & Rodrigues Neto, G. (2023). Resistance exercise with blood flow restriction elicits perceptual responses similar to high-load resistance exercise in women with type 2 diabetes: a crossover and randomized study. Health Nexus, 1(1), 32–39. https://doi.org/https:/doi.org/10.61838/kman.hn.1.1.6
- Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., & Clark, B. C. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta physiologica, 201(2), 255–263.
- Mondal, A., Jangra, M. K., Banyal, M., & Saxena, A. (2024). Reaping Metabolic Benefits of Blood Flow Restriction Training (BFRT): A Boon for Diabetes and HypertensionA Narrative Review. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2024/75493.20004
- Mudaliar, S., & Edelman, S. V. (2001). Insulin therapy in type 2 diabetes. Endocrinology and Metabolism Clinics of North America, 30(4), 935–982. https://doi.org/10.1016/S0889-8529(05)70222-X
- Nascimento, D. da C., Rolnick, N., Neto, I. V. de S., Severin, R., & Beal, F. L. R. (2022). A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.808622
- Okita, K., Takada, S., Morita, N., Takahashi, M., Hirabayashi, K., Yokota, T., & Kinugawa, S. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Applied Physiology, Nutrition, and Metabolism, 44(7), 759–764. https://doi.org/10.1139/apnm-2018-0321
- Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y., & Newman, A. B. (2009). Excessive Loss of Skeletal Muscle Mass in Older Adults With Type 2 Diabetes. Diabetes Care, 32(11), 1993–1997. https://doi.org/10.2337/dc09-0264
- Park, S.-Y., Kwak, Y. S., Harveson, A., Weavil, J. C., & Seo, K. E. (2015). Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans. The Korean Journal of Physiology & Pharmacology, 19(3), 191. https://doi.org/10.4196/kjpp.2015.19.3.191
- Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology, 130(4), 1163–1170. https://doi.org/10.1152/japplphysiol.00982.2020
- Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021a). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
- Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021b). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
- Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021c). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
- Şahin, E., Ayaz, T., & Saglam, M. (2024). Acute effects of blood flow restricted aerobic exercise in type 2 diabetes mellitus. Medicine (United States), 103(31), e39031. https://doi.org/10.1097/MD.0000000000039031
- Satoh, T. (2014). Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes. International Journal of Molecular Sciences, 15(10), 18677–18692. https://doi.org/10.3390/ijms151018677
- Schoenfeld, B. J., Ogborn, D., Piñero, A., Burke, R., Coleman, M., & Rolnick, N. (2023). Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(2), 51. https://doi.org/10.3390/jfmk8020051
- Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251
- Strasser, B. (2018). Survival of the fittest VO sub 2 sub max a key predictor of longevity. Frontiers in Bioscience, 23(8), 4657. https://doi.org/10.2741/4657
- Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., Hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65–73. https://doi.org/10.1007/s00421-005-1389-1
- Tanaka, M., Morifuji, T., Sugimoto, K., Akasaka, H., Fujimoto, T., Yoshikawa, M., Nakanishi, R., Kondo, H., & Fujino, H. (2021). Effects of combined treatment with blood flow restriction and low-current electrical stimulation on capillary regression in the soleus muscle of diabetic rats. Journal of Applied Physiology, 131(4), 1219–1229. https://doi.org/10.1152/japplphysiol.00366.2021
- Tanaka, M., Morifuji, T., Yoshikawa, M., Nakanishi, R., & Fujino, H. (2018). Effects of combined treatment with blood flow restriction and low intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. https://doi.org/10.1111/jdb.12857
- Wagner da Silva Rodrigues, A., Beatriz Alves Martins, A., José Brandão de Albuquerque Filho, N., Sabino de Queiros, V., Gonçalves Assis, M., Samara Batista dos Santos, E., Arthur Cavalcanti Cabral, L., Barbosa Gomes, F., Taheri, M., Irandoust, K., Rodrigues Neto, G., Silva Rodrigues, da, Martins, A., Albuquerque Filho, de, Queiros, de, Assis, G., Santos, dos, & Cabral, C. (2023). Strength Exercises With Blood Flow Restriction Promotes Hypotensive and Hypoglycemic Effects in Women With Mellitus Type 2 Diabetes?: Randomized Crossover Study. Health Nexus, 1(1), 32–39. https://doi.org/https://doi.org/10.61838/kman.hn.1.1.6
- Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896
- Wong, V., Spitz, R. W., Song, J. S., Yamada, Y., Kataoka, R., Hammert, W. B., Kang, A., Seffrin, A., Bell, Z. W., & Loenneke, J. P. (2024). Blood flow restriction augments the cross-education effect of isometric handgrip training. European Journal of Applied Physiology, 124(5), 1575–1585. https://doi.org/10.1007/s00421-023-05386-y
- Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J., & Mulcahey, M. K. (2021). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 49(7), 1938–1944. https://doi.org/10.1177/0363546520964454