Have a personal or library account? Click to login

Potential benefits of blood flow restriction training in patients with type 2 diabetes: A narrative literature review

Open Access
|Jun 2025

References

  1. Abueid, S. (2024). Blood-Flow Restriction Walking: Effects on Insulin Sensitivity and Aerobic Capacity in Type 2 Diabetes. https://doi.org/10.61186/aassjournal.1477
  2. Amani-Shalamzari, S., Rajabi, S., Rajabi, H., Gahreman, D. E., Paton, C., Bayati, M., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00810
  3. Bielitzki, R., Behrendt, T., Behrens, M., & Schega, L. (2021). Current Techniques Used for Practical Blood Flow Restriction Training: A Systematic Review. Journal of Strength and Conditioning Research, 35(10), 2936–2951. https://doi.org/10.1519/JSC.0000000000004104
  4. Chen, H., Huang, X., Dong, M., Wen, S., Zhou, L., & Yuan, X. (2023). The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity, Volume 16, 1541–1554. https://doi.org/10.2147/DMSO.S410834
  5. Cho, C., & Lee, S. (2024). The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. International Journal of Molecular Sciences, 25(17), 9274. https://doi.org/10.3390/ijms25179274
  6. Christiansen, D., Eibye, K. H., Hostrup, M., & Bangsbo, J. (2019). Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism, 98, 1–15. https://doi.org/10.1016/j.metabol.2019.06.003
  7. Christiansen, D., Eibye, K., Hostrup, M., & Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. The Journal of Physiology, 598(12), 2337–2353. https://doi.org/10.1113/JP279554
  8. Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728
  9. Dremin, V., Volkov, M., Margaryants, N., Myalitsin, D., Rafailov, E., & Dunaev, A. (2025). Blood flow dynamics in the arterial and venous parts of the capillary. Journal of Biomechanics, 179, 112482. https://doi.org/10.1016/j.jbiomech.2024.112482
  10. Early, K. S., Rockhill, M., Bryan, A., Tyo, B., Buuck, D., & McGinty, J. (2020). Effect of blood flow restriction training on muscular performance, pain and vascular function. International Journal of Sports Physical Therapy, 15(6), 892–900. https://doi.org/10.26603/ijspt20200892
  11. Fini, E. M., Motefakker, M., Ahmadizad, S., Salimian, M., & Andani, F. M. (2023). Responses of Hemodynamic and Hematological Changes to Resistance Exercise with and Without Blood Flow Restriction in Patients with Type 2 Diabetic. 2(30), 284–300.
  12. Fini, E. M., Salimian, M., & Ahmadizad, S. (2022). Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation, 80(3), 281–289. https://doi.org/10.3233/CH-211229
  13. Giles, L., Webster, K. E., McClelland, J., & Cook, J. L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. British Journal of Sports Medicine, 51(23), 1688–1694. https://doi.org/10.1136/bjsports-2016-096329
  14. Groen, B. B. L., Hamer, H. M., Snijders, T., van Kranenburg, J., Frijns, D., Vink, H., & van Loon, L. J. C. (2014). Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. Journal of Applied Physiology, 116(8), 998–1005. https://doi.org/10.1152/japplphysiol.00919.2013
  15. Hedt, C., McCulloch, P. C., Harris, J. D., & Lambert, B. S. (2022). Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthroscopy, Sports Medicine, and Rehabilitation, 4(1), e51–e63. https://doi.org/10.1016/j.asmr.2021.09.024
  16. Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E. L., Cesari, M., Chen, L.-K., de Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R. A., García-Hermoso, A., Gutiérrez-Robledo, L. M., Harridge, S. D. R., Kirk, B., … Singh, M. F. (2021). International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. The Journal of Nutrition, Health and Aging, 25(7), 824–853. https://doi.org/10.1007/s12603-021-1665-8
  17. Jarosz, J., Trybulski, R., Krzysztofik, M., Tsoukos, A., Filip-Stachnik, A., Zajac, A., Bogdanis, G. C., & Wilk, M. (2021). The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715096
  18. Jones, M. T., Aguiar, E. J., & Winchester, L. J. (2021). Proposed Mechanisms of Blood Flow Restriction Exercise for the Improvement of Type 1 Diabetes Pathologies. In Diabetology (Vol. 2, Issue 4, pp. 176–189). MDPI. https://doi.org/10.3390/diabetology2040016
  19. Joyner, M. J., & Casey, D. P. (2015). Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013
  20. Klein, S., Gastaldelli, A., Yki-Järvinen, H., & Scherer, P. E. (2022). Why does obesity cause diabetes? Cell Metabolism, 34(1), 11–20. https://doi.org/10.1016/j.cmet.2021.12.012
  21. Koutny, T. (2013). Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues. Computers in Biology and Medicine, 43(11), 1680–1686. https://doi.org/10.1016/j.compbiomed.2013.08.008
  22. Lee, S.-H., Park, S.-Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280
  23. Li, S., Li, S., Wang, L., Quan, H., Yu, W., Li, T., & Li, W. (2022). The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.814965
  24. Lopez-Pedrosa, J. M., Camprubi-Robles, M., Guzman-Rolo, G., Lopez-Gonzalez, A., Garcia-Almeida, J. M., Sanz-Paris, A., & Rueda, R. (2024). The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients, 16(1), 172. https://doi.org/10.3390/nu16010172
  25. Lorenz, D. S., Bailey, L., Wilk, K. E., Mangine, R. E., Head, P., Grindstaff, T. L., & Morrison, S. (2021). Blood Flow Restriction Training. Journal of Athletic Training, 56(9), 937–944. https://doi.org/10.4085/418-20
  26. Ma, X., Ai, Y., Lei, F., Tang, X., Li, Q., Huang, Y., Zhan, Y., Mao, Q., Wang, L., Lei, F., Yi, Q., Yang, F., Yin, X., He, B., Zhou, L., & Ruan, S. (2024). Effect of blood flow-restrictive resistance training on metabolic disorder and body composition in older adults with type 2 diabetes: a randomized controlled study. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1409267
  27. Martins, A., José Brandão de Albuquerque Filho, N., Gonçalves Assis, M., Sabino de Queiros, V., Wagner da Silva Rodrigues, A., Samara Batista dos Santos, E., Guilherme de Araújo Tinôco Cabral, B., Cesar Gomes da Silva, J., & Rodrigues Neto, G. (2023). Resistance exercise with blood flow restriction elicits perceptual responses similar to high-load resistance exercise in women with type 2 diabetes: a crossover and randomized study. Health Nexus, 1(1), 32–39. https://doi.org/https:/doi.org/10.61838/kman.hn.1.1.6
  28. Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., & Clark, B. C. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta physiologica, 201(2), 255–263.
  29. Mondal, A., Jangra, M. K., Banyal, M., & Saxena, A. (2024). Reaping Metabolic Benefits of Blood Flow Restriction Training (BFRT): A Boon for Diabetes and HypertensionA Narrative Review. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2024/75493.20004
  30. Mudaliar, S., & Edelman, S. V. (2001). Insulin therapy in type 2 diabetes. Endocrinology and Metabolism Clinics of North America, 30(4), 935–982. https://doi.org/10.1016/S0889-8529(05)70222-X
  31. Nascimento, D. da C., Rolnick, N., Neto, I. V. de S., Severin, R., & Beal, F. L. R. (2022). A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.808622
  32. Okita, K., Takada, S., Morita, N., Takahashi, M., Hirabayashi, K., Yokota, T., & Kinugawa, S. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Applied Physiology, Nutrition, and Metabolism, 44(7), 759–764. https://doi.org/10.1139/apnm-2018-0321
  33. Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y., & Newman, A. B. (2009). Excessive Loss of Skeletal Muscle Mass in Older Adults With Type 2 Diabetes. Diabetes Care, 32(11), 1993–1997. https://doi.org/10.2337/dc09-0264
  34. Park, S.-Y., Kwak, Y. S., Harveson, A., Weavil, J. C., & Seo, K. E. (2015). Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans. The Korean Journal of Physiology & Pharmacology, 19(3), 191. https://doi.org/10.4196/kjpp.2015.19.3.191
  35. Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology, 130(4), 1163–1170. https://doi.org/10.1152/japplphysiol.00982.2020
  36. Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021a). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
  37. Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021b). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
  38. Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021c). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010
  39. Şahin, E., Ayaz, T., & Saglam, M. (2024). Acute effects of blood flow restricted aerobic exercise in type 2 diabetes mellitus. Medicine (United States), 103(31), e39031. https://doi.org/10.1097/MD.0000000000039031
  40. Satoh, T. (2014). Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes. International Journal of Molecular Sciences, 15(10), 18677–18692. https://doi.org/10.3390/ijms151018677
  41. Schoenfeld, B. J., Ogborn, D., Piñero, A., Burke, R., Coleman, M., & Rolnick, N. (2023). Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(2), 51. https://doi.org/10.3390/jfmk8020051
  42. Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251
  43. Strasser, B. (2018). Survival of the fittest VO sub 2 sub max a key predictor of longevity. Frontiers in Bioscience, 23(8), 4657. https://doi.org/10.2741/4657
  44. Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., Hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65–73. https://doi.org/10.1007/s00421-005-1389-1
  45. Tanaka, M., Morifuji, T., Sugimoto, K., Akasaka, H., Fujimoto, T., Yoshikawa, M., Nakanishi, R., Kondo, H., & Fujino, H. (2021). Effects of combined treatment with blood flow restriction and low-current electrical stimulation on capillary regression in the soleus muscle of diabetic rats. Journal of Applied Physiology, 131(4), 1219–1229. https://doi.org/10.1152/japplphysiol.00366.2021
  46. Tanaka, M., Morifuji, T., Yoshikawa, M., Nakanishi, R., & Fujino, H. (2018). Effects of combined treatment with blood flow restriction and low intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. https://doi.org/10.1111/jdb.12857
  47. Wagner da Silva Rodrigues, A., Beatriz Alves Martins, A., José Brandão de Albuquerque Filho, N., Sabino de Queiros, V., Gonçalves Assis, M., Samara Batista dos Santos, E., Arthur Cavalcanti Cabral, L., Barbosa Gomes, F., Taheri, M., Irandoust, K., Rodrigues Neto, G., Silva Rodrigues, da, Martins, A., Albuquerque Filho, de, Queiros, de, Assis, G., Santos, dos, & Cabral, C. (2023). Strength Exercises With Blood Flow Restriction Promotes Hypotensive and Hypoglycemic Effects in Women With Mellitus Type 2 Diabetes?: Randomized Crossover Study. Health Nexus, 1(1), 32–39. https://doi.org/https://doi.org/10.61838/kman.hn.1.1.6
  48. Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896
  49. Wong, V., Spitz, R. W., Song, J. S., Yamada, Y., Kataoka, R., Hammert, W. B., Kang, A., Seffrin, A., Bell, Z. W., & Loenneke, J. P. (2024). Blood flow restriction augments the cross-education effect of isometric handgrip training. European Journal of Applied Physiology, 124(5), 1575–1585. https://doi.org/10.1007/s00421-023-05386-y
  50. Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J., & Mulcahey, M. K. (2021). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 49(7), 1938–1944. https://doi.org/10.1177/0363546520964454
Language: English
Page range: 186 - 196
Submitted on: Apr 1, 2025
Accepted on: May 3, 2025
Published on: Jun 3, 2025
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Robert Trybulski, Filipe Manuel Clemente, Grzegorz Biolik, Michał Wilk, Adrian Kużdżał, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.