Ahmadi, A., Sheikholeslami-Vatani, D., Ghaeeni, S., Baazm, M. (2021). The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles. Molecular Biology Reports, 48, 2153–2161. https://doi.org/10.1007/s11033-021-06224-0
Bailey, D. P., Smith, L. R., Chrismas, B. C., Taylor, L., Stensel, D. J., Deighton, K., Douglas, J. A., Kerr, C. J. (2015). Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity inter-val exercise, in normoxic and hypoxic conditions. Appetite, 89, 237–245. https://doi.org/10.1016/j.appet.2015.02.019
Balykin, M. V., Gening, T. P., Vinogradov, S. N. (2004). Morphological and functional changes in overweight persons under combined normobaric hypoxia and physical training. Human Physiology, 30, 184–191. https://doi.org/10.1023/B:HUMP.0000021647.73620.06
Belikova, M. V., Kolesnikova, E. E., Serebrovskaya, T. V. (2012). Intermittent hypoxia and experimental Parkinson’s disease. In Xi, L., Serebrovskaya, T. V. (Eds.), Intermittent hypoxia and human diseases (pp. 147–153). Springer, London.
Brinkmann, C., Bloch, W., Brixius, K. (2018). Exercise during short-term exposure to hypoxia or hyperoxia -novel treatment strategies for type 2 diabetic patients? Scandinvian Journal of Medicine & Science in Sports, 28(2), 549–564. https://doi.org/10.1111/sms.12937
Britto, F.A., De Groote, E., Aranda, J., Bullock, L., Nielens, H., Deldicque, L. (2020). Effects of a 30-week combined training program in normoxia and in hypoxia on exercise performance and health-related parameters in obese adolescents: a pilot study. The Journal of Sports Medicine and Physical Fitness, 60(4), 601–609. https://doi.org/10.23736/s0022-4707.20.10190-7
Burtscher, M., Haider, T., Domej, W., Linser, T., Gatterer, H., Faulhaber, M., Pocecco, E., Ehrenburg, I., Tkatchuk, E., Koch, R., Bernardi, L. (2009). Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respiratory Physiology & Neurobiology, 165(1), 97–103. https://doi.org/10.1016/j.resp.2008.10.012
Burtsher, M., Pachinger, O., Ehrenbourg, I., Mitter-bauer, G., Faulhaber, M., Puhringer, R., Thatchouk, E. (2004). Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. International Journal of Cardiology, 96, 247–254. https://doi.org/10.1016/j.ijcard.2003.07.021
Chang, J. C., Lien, C. F., Lee, W. S., Chang, H. R., Hsu, Y. C., Luo, Y. P., Jeng, J. R., Hsieh, J. C., Yang, K. T. (2019). Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca(2+) Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells, 8. https://doi.org/10.3390/cells8060564
Chobanyan-Jurgens, K., Scheibe, R. J., Potthast, A. B., et al. (2019). Influences of hypoxia exercise on whole-body insulin sensitivity and oxidative metabolism in older individuals. The Journal of Clinical Endocrinology & Metabolism, 104(11), 5238–5248. https://doi.org/10.1210/jc.2019-00411
Clanton, T. L. & Klawitter, P. F. (2001). Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. Journal of Applied Physiology, 90, 2476–2487. https://doi.org/10.1152/jappl.2001.90.6.2476
Costa, G. P., Camacho-Cardenosa, A., Brazo-Sayavera, J., Viliod, M. C. L, Camacho-Cardenosa, M., Foresti, Y. F., de Carvalho, C. D., Merellano-Navarro, E., Papoti, M., Trapé, Á. A. (2022). Effectiveness, implementation, and monitoring variables of intermittent hypoxic bicycle training in patients recovered from COVID-19: The AEROBICOVID study. Frontiers in Physiology, 2(13), 977519. https://doi.org/10.3389/fphys.2022.977519
Czuba, M., Bril, G., Płoszczyca, K., Piotrowicz, Z., Chalimoniuk, M., Roczniok, R., Zembroń-Łacny, A., Gerasimuk, D., Langfort, J. (2019). Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BioMed Research International, 25(2019), 1287506. https://doi.org/10.1155/2019/1287506
Czuba, M., et al. (2018). Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biology of Sport, 35(1), 39–48. https://doi.org/10.5114/biolsport.2018.70750
Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Medicine & Science in Sports, 10, 175–183.
Czuba, M., Wilk, R., Karpiński, J., Chalimoniuk, M., Zajac, A., Langfort, J. (2017). Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One, 12(8), e0180380. https://doi.org/10.1371/journal.pone.0180380
Czuba, M., Zając, A., Maszczyk, A., Roczniok, R., Poprzęcki, S., Garbaciak, W., Zając, T. (2013). The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. Journal of Human Kinetics, 31(39), 103–14. https://doi.org/10.2478/hukin-2013-0073
De Groote, E., & Deldicque, L. (2021). Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes, Metabolic Syndrome and Obesity, 11(14), 3603–3616. https://doi.org/10.2147/DMSO.S322249
Debevec, T., Simpson, E. J., Macdonald, I. A., Eiken, O., Mekjavić, I. B. (2014). Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation. PLoS ONE, 9, e98874. https://doi.org/10.1371/journal.pone.0098874
Della Guardia, L., Shin, A. C. (2024). Obesity-induced tissue alterations resist weight loss: A mechanistic review. Diabetes, Obesity and Metabolism. 26(8), 3045–3057. https://doi.org/10.1111/dom.15637
Dufour, S. P, Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., Lampert, E., Flück, M., Hoppeler, H., Billat, V., Mettauer, B., Richard, R., Lonsdorfer, J. (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvements in aerobic performance capacity. Journal of Applied Physiology, 100, 1238–1248. https://doi.org/10.1152/japplphysiol.00742.2005
Ezzati, M., Horwitz, M. E., Thomas, D. S., Friedman, A. B., Roach, R., Clark, T. (2011). Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. Journal of Epidemiology and Community Health, 66. https://doi.org/10.1136/jech.2010.112938
Fuller, N. R., Courtney, R. (2016). A case of remission from pre-diabetes following intermittent hypoxic training, Obesity Research & Clinical Practice, 10(4), 487–491. https://doi.org/10.1016/j.orcp.2016.05.008.
Garrido-Sa´nchez, L., Garcı´a-Fuentes, E., Ferna´ndez-Garcı´a, D., Escote´, X., Alcaide, J., et al. (2012) Zinc-Alpha 2-Glycoprotein Gene Expression in Adipose Tissue Is Related with Insulin Resistance and Lipolytic Genes in Morbidly Obese Patients. PLoS ONE, 7(3): e33264. https://doi.org/10.1371/journal.pone.0033264
Gilde, A. J., Van Bilsen, M. (2003). Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle. Acta Physiologica Scandinavica, 178, 425–434. https://doi.org/10.1046/j.1365-201X.2003.01161.x
Girard, O., Brocherie, F., Millet, G. P. (2017). Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Medicine, 47(10), 1931–1949. https://doi.org/10.1007/s40279-017-0733-z
Gonzalez-Rothi, E. J., Lee, K. Z., Dale, E. A., Reier, P. J., Mitchell, G. S., Fuller, D. D. (2015). Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 119, 1455–1465. https://doi.org/10.1152/japplphysiol.00235.2015
Griffiths, A., Deighton, K., Shannon, O. M., Boos, C., Rowe, J., Matu, J., King, R., O’Hara, J. P. (2020). Appetite and energy intake responses to breakfast consumption and carbohydrate supplementation in hypoxia. Appetite, 1(147), 104564. https://doi.org/10.1016/j.appet.2019.104564
Guner, I., Uzun, D. D., Yaman, M. O., Genc, H., Gelisgen, R., Korkmaz, G. G., Hallac, M., Yelmen, N., Sahin, G., Karter, Y., Simsek, G. (2013). The effect of chronic long-term intermittent hypobaric hypoxia on bone mineral density in rats: role of nitric oxide. Biological Trace Element Research, 154, 262–267. https://doi.org/10.1007/s12011-013-9722-8
Haider, T., Casucci, G., Linser, T., Faulhaber, M., Gatterer, H., Ott, G., Linser, A., Ehrenbourg, I., Tkatchouk, E., Burtscher, M., Bernardi, L. (2009). Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. Journal of Hypertension, 27, 1648–1654. https://doi.org/10.1097/hjh.0b013e32832c0018
Harrison, C. C., Fleming, J. M., Giles, L. C. (2002). Does interval hypoxic training affect the lung function of asthmatic athletes. New Zeal. J. Sport. Med., 30, 64–67.
Haufe, S., Wiesner, S., Engeli, S., Luft, F. C., Jordan, J. (2008). Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Medicine & Science in Sports & Exercise, 40, 1939–1944. https://doi.org/10.1249/mss.0b013e31817f1988
Hochachka, P. W. (1998). Mechanism and Evolution of Hypoxia-Tolerance in Humans. Journal of Experimental Biology, 201(8), 1243–1254. https://doi.org/10.1242/jeb.201.8.1243
Hoppeler, H., Klossner, S., Vogt, M. (2008). Training in hypoxia and its effects on skeletal muscle tissue. Scandinavian Journal of Medicine & Science in Sports, 18(1), 38–49. https://doi.org/10.1111/j.1600-0838.2008.00831.x
Howells, D. W., Porritt, M. J., Wong, J. Y., Batchelor, P. E., Kalnins, R., Hughes, A. J., Donnan, G. A. (2000). Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Experimental Neurology, 166(1), 127–35. https://doi.org/10.1006/exnr.2000.7483
Jung, W. S., Kim, S. W., Kim, J. W., Park, H. Y. (2021). Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel), 11(2), 106. https://doi.org/10.3390/life11020106
Kayser, B., Verges, S. (2013). Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Etiology and Patho-physiology/Obesity Treatment, 14(7), 579–92. https://doi.org/10.1111/obr.12034
Kim, S. W., Jung, W. S., Chung, S., Park, H. Y. (2021). Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World Journal of Diabetes, 12(4), 331-343. https://doi.org/10.4239/wjd.v12.i4.331
Kon, Michihiro, et al. (2014). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiological reports, 2(6), e12033. https://doi.org/10.14814/phy2.12033
Levine, B. D., Stray-Gundersen, J. (1992). A practical approach to altitude training: where to live and train for optimal performance enhancement. International Journal of Sports Medicine, 1, S209-12. https://doi.org/10.1055/s-2007-1024642
Levine, B. D., Stray-Gundersen, J. (1997). “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 83(1), 102–12. https://doi.org/10.1152/jappl.1997.83.1.102
Lizamore, C. A., & Hamlin, M. J. (2017) The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Altitude Medicine & Biology, 18, 305–321. https://doi.org/10.1089/ham.2017.0050
Lizamore, C. A., Kathiravel, Y., Elliott, J., Hellemans, J., Hamlin, M. J. (2016). The effect of short-term intermittent hypoxic exposure on heart rate variability in a sedentary population. Acta Physiologica Hungarica, 103, 75–85. https://doi.org/10.1556/036.103.2016.1.7
Lyamina, N. P., Lyamina, S. V., Skorobogatyth, N. V., Ksenofontova, I. V., Spirina, G. K. (2023). Controlled hypoxia-hyperoxytherapy as a component of a targeted approach in the rehabilitation of patients with multimorbidity: a single-center, randomized, placebo-controlled, prospective study. Physical and rehabilitation medicine, medical rehabilitation, 5(4), 279–288. https://doi.org/10.36425/rehab608182
Mackenzie, R., Maxwell, N., Castle, P., Brickley, G., Watt, P. (2011). Acute hypoxia and exercise improve insulin sensitivity (S(I) (2*)) in individuals with type 2 diabetes. Diabetes/Metabolism Research and Reviews, 27(1), 94–101. https://doi.org/10.1002/dmrr.1156
Mackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., Watt, P. (2012). Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 97(4), E546–E555. https://doi.org/10.1210/jc.2011-2829
Manukhina, E. B., Downey, H. F., Shi, X., Mallet, R. T. (2016). Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Experimental Biology and Medicine, 241, 1351–1363. https://doi.org/10.1177/1535370216649060
Manukhina, E. B., Goryacheva, A. V., Pshennikova, M. G., Malyshev, I. Y., Mallet, R. T., Downey, H. F., 2012. Protective effects of adaptation to hypoxia in experimental Alzheimer’s disease. IN Xi L., Serebrovskaya T.V. (Eds) Intermittent hypoxia and human diseases. (pp 155–171). Springer, London.
Martínez-Guardado, I., Ramos-Campo, D. J., Olcina, G. J., Rubio-Arias, J. A., Chung, L. H., Marín-Cascales, E., Alcaraz, P. E., Timón, R. (2019). Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. The European Journal of Sport Science, 19(7), 941–951. https://doi.org/10.1080/17461391.2018.1564796
Matu, J, Deighton, K., Ispoglou, T., Duckworth, L. (2017). The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men. Appetite, 113, 284–292. https://doi.org/10.1016/j.appet.2017.02.041
Matu, J., O’Hara, J., Hill, N., Clarke, S., Boos, C., Newman, C., Holdsworth, D., Ispoglou, T., Duckworth, L., Woods, D., Mellor, A., Deighton, K. (2017). Changes in appetite, energy intake, body composition, and circulating ghrelin constituents during an incremental trekking ascent to high altitude. European Journal of Applied Physiology, 117, 1917–1928. https://doi.org/10.1007/s00421-017-3683-0
Millet, G. P., Debevec, T., Brocherie, F., Malatesta, D., Girard, O. (2016). Therapeutic use of exercising in hypoxia: promises and limitations. Frontiers in Physiology, 7. https://doi.org/10.3389/fphys.2016.00224
Millet, G. P., Jornet, K. (2019). On Top to the Top-Acclimatization Strategy for the “Fastest Known Time” to Mount Everest. International Journal of Sports Physiology and Performance, 14(10), 1438–1441. https://doi.org/10.1123/ijspp.2018-0931
Morishima, T., & Goto, K. (2016). Ghrelin, GLP-1, and leptin responses during exposure to moderate hypoxia. Applied Physiology, Nutrition, and Metabolism, 41(4), 375–81. https://doi.org/10.1139/apnm-2015-0311
Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., Uchida, A. (2010). Hypoxia increases muscle hypertrophy induced by resistance training. International Journal of Sports Physiology and Performance, 5, 497–508. https://doi.org/10.1123/ijspp.5.4.497
Nishiwaki, M., Kawakami, R., Saito, K., Tamaki, H., Takekura, H., Ogita, F. (2011). Vascular adaptations to hypobaric hypoxic training in postmenopausal women. The Journal of Physiological Sciences, 61, 83–91. https://doi.org/10.1007/s12576-010-0126-7
O’Donnell, C. P. (2007). Metabolic Consequences Of Intermittent Hypoxia. In Roach R. C., Wagner P. D., Hackett P. H. (Eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, 618 (pp 41-49). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_4
Ogh, S., Tsukamoto, H., Hirasawa, A., Hasegawa, H., Hirose, N., Hashimoto, T. (2014). The E ect of Changes in Cerebral Blood Flow on Cognitive Function during Exercise. Physiological Reports, 2, e12163. https://doi.org/10.14814/phy2.12163
Palmer, R. M., Ferrige, A. G., Moncada, S. (1987). Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor. Nature, 327, 524–526. https://doi.org/10.1038/327524a0
Park, H. Y., Jung, W. S., Kim, J., Lim, K. (2019). Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: A randomized controlled trial. Geriatrics & Gerontology International, 19(4), 311–316. https://doi.org/10.1111/ggi.13625
Park, H. Y., & Lim, K. (2017) The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. International Journal of Sports Science, 1, 1–5.
Park, H., Poo, M. M. (2013). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14, 7–23. https://doi.org/10.1038/nrn3379
Park, H.-Y., Kim, J., Park, M.-Y., Chung, N., Hwang, H., Nam, S.-S., Lim, K. (2018). Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. Journal of Obesity and Metabolic Syndrome, 27, 93–101. https://doi.org/10.7570/jomes.2018.27.2.93
Park, H.-Y., & Lim, K. (2017). Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. Journal of Sports Science and Medicine, 16, 480–488.
Piotrowicz, Z., Chalimoniuk, M., Płoszczyca, K., Czuba, M., Langfort, J. (2019). Acute normobaric hypoxia does not affect the simultaneous exerciseinduced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS ONE, 14(10): e0224207. https://doi.org/10.1371/journal.%20pone.0224207
Piotrowicz, Z., Chalimoniuk, M., Płoszczyca, K., Czuba, M., Langfort, J. (2020). Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int. J. Mol. Sci, 21, 5569. https://doi.org/10.3390/ijms21155569
Płoszczyca, K., Czuba, M., Langfort, J., Baranowski, M. (2021). Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients, 13, 3481. https://doi.org/10.3390/nu13103481
Płoszczyca, K., Langfort, J., Czuba, M. (2018). The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Frontiers in Physiology, 11(9), 375. https://doi.org/10.3389/fphys.2018.00375
Raberin, A., Burtscher, J., Burtscher, M., Millet, G. P. (2023). Hypoxia and the Aging Cardiovascular System. Aging and disease, 14(6), 2051-2070. https://doi.org/10.14336/AD.2023.0424
Rodway, G. W., Sethi, J. M., Hoffman, L. A., Conley, Y. P., Choi, A. M., Sereika, S. M., Zullo, T. G., Ryter, S. W., Sanders, M. H. (2007). Hemodynamic and molecular response to intermittent hypoxia (IH) versus continuous hypoxia (CH) in normal humans. Translational Research, 149(2), 76-84. https://doi.org/10.1016/j.trsl.2006.09.005
Rybnikova, E. A., Nalivaeva, N. N., Zenko, M. Y., Baranova, K. A. (2022). Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Frontiers in Neuroscience, 21(16), 941740. https://doi.org/10.3389/fnins.2022.941740
Ryou, M. G., Chen, X., Cai, M., Wang, H., Jung, M. E., Metzger, D. B., Mallet, R. T., Shi, X. (2021). Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer’s Disease: A Pilot Study. Frontiers in Aging Neuroscience, 1(13), 674688. https://doi.org/10.3389/fnagi.2021.674688
Schega, L., Peter, B., Brigadski, T., Leßmann, V., Iser-mann, B., Hamacher, D., Törpel, A. (2016). Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. Journal of Science and Medicine in Sport, 19(11), 941–945. https://doi.org/10.1016/j.jsams.2016.02.012
Serebrovskaia, T. V., Mankovskaia, I. N., Lysenko, G. I., Swanson, R., Belinskaia, I. V., Oberenko, O. A., Daniliuk, S. V. (1998). A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Likars’ka sprava, 6, 104–108.
Serebrovskaya, T. V., Manukhina, E. B., Smith, M. L., Downey, H. F., Mallet, R. T. (2008). Intermittent hypoxia: cause of ortherapy for systemic hypertension? Experimental Biology and Medicine, 233, 627–650. https://doi.org/10.3181/0710-MR-267
Shatilo, V. B., Korkushko, O. V., Ischuk, V. A., Downey, H. F., Serebrovskaya, T. V. (2008). Effects of intermittent hypoxic training on exercise performance, haemodynamics, and ventilation in healthy senior men. High Altitude Medicine & Biology, 9, 43–52. https://doi.org/10.1089/ham.2007.1053
Snyder, E. M., Carr, R. D., Deacon, C. F., Johnson, B. D. (2008). Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Applied Physiology, Nutrition, and Metabolism, 33(5), 929–935. https://doi.org/10.1139/H08-079
Soo, J., Raman, A., Lawler, N. G., Goods, P. S. R., Deldicque, L., Girard, O., Fairchild, T. J. (2023). The role of exercise and hypoxia on glucose transport and regulation. European Journal of Applied Physiology, 123(6), 1147–1165. https://doi.org/10.1007/s00421-023-05135-1
Stray-Gundersen, J., & Levine, B. (2008). Live high, train low at natural altitude. Scandinavian journal of medicine & science in sports, 18(1), 21–8. https://doi.org/10.1111/j.1600-0838.2008.00829.x
Swenson, E. R. (2020). Sympathetic Nervous System Activation and Vascular Endothelial Function With Chronic Hypoxia. Circulation Research, 127(2), 247–248. https://doi.org/10.1161/CIRCRESAHA.120.317114
Thayer, J. F., Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74, 224–242. https://doi.org/10.1016/j.biopsycho.2005.11.013
Urdampilleta, A., González-Muniesa, P., Portillo, M. P., Martínez, J. A. (2012). Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. Journal of Physiology and Biochemistry, 68, 289–304. https://doi.org/10.1007/s13105-011-0115-1
Vogtel, M., & Michels, A. (2010). Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Current Opinion in Allergy and Clinical Immunology, 10(3), 206–213. https://doi.org/10.1097/aci.0b013e32833903a6
Voss, J. D., Allison, D. B., Webber, B. J., Otto, J. L., Clark, L. L. (2014). Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS ONE, 9, e93493. https://doi.org/10.1371/journal.pone.0093493
Wang, J. S., Chen, L. Y., Fu, L. L., Chen, M. L., Wong, M. K. (2007). Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. European Journal of Applied Physiology, 100(2), 127–35. https://doi.org/10.1007/s00421-007-0409-8
Wang, Y., Wen, L., Zhou, S., Zhang, Y., Wang, X. H., He, Y. Y., Davie, A., Broadbent, S. (2018). Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One, 13(9), e0203551. https://doi.org/10.1371/journal.pone.0203551
Wasse, L. K., Sunderland, C., King, J.A., Batterham, R.L., Stensel, D. J. (2012). Influence of rest and exercise at a simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and peptide YY. Journal of Applied Physiology, 112(4), 552-9. https://doi.org/10.1152/japplphysiol.00090.2011
Weil, B. R., Stauffer, B. L., Mestek, M. L., DeSouza, C. A. (2011). Influence of abdominal obesity on vascular endothelial function in overweight/obese adult men. Obesity (Silver Spring), 19, 1742–1746. https://doi.org/10.1038/oby.2011.189
Wiesner S., Haufe S., Engeli S., Mutschler H., Haas U., Luft F. C., et al. (2010). Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring), 18, 116–120. https://doi.org/10.1038/oby.2009.193
Wilber, R. L. (2007) Application of altitude/hypoxic training by elite athletes. Medicine & Science in Sports & Exercise, 39(9), 1610–1624. https://doi.org/10.1249/mss.0b013e3180de49e6
Wiśniewska, A., Płoszczyca, K., Czuba, M. (2020). Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. The Journal of Sports Medicine and Physical Fitness, 60. https://doi.org/10.23736/s0022-4707.20.10404-3
Yamada, K., & Nabeshima, T. (2003). Brain-derived neurotrophic factor/TrkB signaling in memory processes. Journal of Pharmacological Sciences, 91, 267–270. https://doi.org/10.1254/jphs.91.267
Yang, J. L., Lin, Y. T., Chuang, P. C., Bohr, V. A., Mattson, M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Medicine, 16, 161–174. https://doi.org/10.1007/s12017-013-8270-x
Yingzhong, Y., Droma, Y., Rili, G., Kubo, K. (2006). Regulation of body weight by leptin, with special reference to hypoxia-induced regulation. Internal Medicine, 45, 941–946. https://doi.org/10.2169/internalmedicine.45.1733
Zembron-Lacny, A., Tylutka, A., Wacka, E., Wawrzyniak-Gramacka, E., Hiczkiewicz, D., Kasperska, A., Czuba, M. (2020). Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Research International, 2020, Article ID 6479630. https://doi.org/10.1155/2020/6479630
Zhao, M. L., Lu, Z. J., Yang, L., Ding, S., Gao, F., Liu, Y. Z., Yang, X. L., Li, X., He, S.Y. (2024). The cardiovascular system at high altitude: A bibliometric and visualization analysis. World Journal of Cardiology, 16(4), 199–214. https://doi.org/10.4330/wjc.v16.i4.199
Zhong, H., Belardinelli, L., Maa, T., Zeng, D. (2005). Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 20(32), 2–8. https://doi.org/10.1165/rcmb.2004-0103OC
Zoll, J., Ponsot, E., Dufour, S., Doutreleau, S., Ventura-Clapier, R., Vogt, M., Hoppeler, H., Richard, R. and Fluck, M. (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts Journal of Applied Physiology, 100, 1258–1266. https://doi.org/10.1152/japplphysiol.00359.2005