Have a personal or library account? Click to login

The effect of the lowest heat stress limit conditions on psychomotor parameters in soccer players

Open Access
|Oct 2024

References

  1. AbuMoh’d M.F., Matalqah L., Al-Abdulla Z. (2020) Effects of Oral Branched-Chain Amino Acids (BCAAs) Intake on Muscular and Central Fatigue During an Incremental Exercise. J. Hum. Kinet., 72(1): 69–78. DOI: 10.2478/hukin-2019-0099
  2. Belding H.S., Hatch T.F. (1955) Index for evaluating heat stress in terms of resulting physiological strain. Heat. Piping. Air. Cond., 27(8): 129-136.
  3. Błażejczyk K. (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. In: Błażejczyk K., Krawczyk B. Bioclimatic research of the human heat balance. Zesz. IGiPZ PAN 28: 27-58.
  4. Błażejczyk K., Matzarakis A. (2007) Assessment of bio-climatic differentiation of Poland based on the human heat balance. Geogr., 80(1): 63-82.
  5. Brisswalter J., Arcelin R., Audiffren M., Delignières D. (1997) Influence of Physical Exercise on Simple Reaction Time: Effect of Physical Fitness. Percept. Mot. Skills., 85(3): 1019–1027. DOI: 10.2466/pms.1997.85.3.1019
  6. Chmura J., Nazar K. (2010) Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes. Int. J. Psychophysiol., 75(3): 287–290. DOI: 10.1016/j.ijpsycho.2009.12.011
  7. Chmura J., Chmura P., Konefał M., Batra A., Mroczek D., Kosowski M., Młynarska K., Andrzejewski M., Rokita A., Ponikowski P. (2020) The Effects of a Marathon Effort on Psychomotor Performance and Catecholamine Concentration in Runners over 50 Years of Age. Appl. Sci., 10(6): 2067. DOI: 10.3390/app10062067
  8. Chmura J., Nazar K., Kaciuba-Uścilko H. (1994) Choice Reaction Time During Graded Exercise in Relation to Blood Lactate and Plasma Catecholamine Thresholds. Int. J. Sports. Med., 15(04): 172–176. DOI: 10.1055/s-2007-1021042
  9. Chmura P., Chmura J., Chodor W., Drożdżowski A., Rokita A., Konefał M. (2023) The effects of high-intensity interval training at the anaerobic and psychomotor fatigue thresholds on physiological parameters in young soccer players: a prospective study. Front. Physiol., 14: 1221121. DOI: 10.3389/fphys.2023.1221121
  10. Chmura P., Konefał M., Andrzejewski M., Kosowski J., Rokita A., Chmura J. (2017) Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity. Int. J. Biometeorol., 61: 677-684. DOI: 10.1007/s00484-016-1245-5
  11. Chodor W., Chmura P., Chmura J., Andrzejewski M., Jówko E., Buraczewski T., Drożdżowski A., Rokita A., Konefał M. (2021) Impact of climatic conditions projected at the World Cup in Qatar 2022 on repeated maximal efforts in soccer players. PeerJ., 9: e12658. DOI: 10.7717/peerj.12658
  12. Coker N.A., Wells A.J., Gepner Y. (2020) Effect of Heat Stress on Measures of Running Performance and Heart Rate Responses During a Competitive Season in Male Soccer Players. J. Strength. Cond., 34(4): 1141–1149. DOI: 10.1519/JSC.0000000000002441
  13. Czuba M., Zając A., Cholewa J., Poprzęcki S., Waśkiewicz Z., Mikołajec K. (2009) Lactate Threshold (D-Max Method) and Maximal Lactate Steady State in Cyclists. J. Hum. Kinet., 21(1): 49–56. DOI:10.2478/v10078-09-0006-5
  14. de Freitas C.R., Ryken M.G. (1989) Climate and physiological heat strain during exercise. Int. J. Biometeorol., 33: 157-164. DOI: 10.1007/BF01084600
  15. Geletič J., Lehnert M., Savić S., Milošević D. (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total. Environ., 624: 385–395. DOI: 10.1016/j.scitotenv.2017.12.076
  16. Grantham, J., Cheung S.S., Connes P., Febbraio M.A., Gaoua N., González-Alonso J., Hue O., Johnson J.M., Maughan R.J., Meeusen R., Nybo L., Racinais S., Shirreffs S.M., Dvorak J. (2010) Current knowledge on playing football in hot environments. Scand. J. Med. Sci. Sports., 20: 161–167. DOI: 10.1111/j.1600-0838.2010.01216.x
  17. Hasegawa H., Takatsu S., Ishiwata T., Tanaka H., Sarre S., Meeusen R. (2011) Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. J. Neurosci. Methods., 202(2): 119–123. DOI: 10.1016/j.jneumeth.2011.05.024
  18. Hensen J.L.M. (1990) Literature review on thermal comfort in transient conditions. Build. Environ., 25(4): 309–316. DOI: 10.1016/0360-1323(90)90004-B
  19. ISO/DIS 7933 (2004) Hot environments – analytical determination of thermal stress. International Organisation of Standardization, Geneva.
  20. Kampmann B., Bröde P., Fiala D. (2012) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int. J. Biometeorol., 56: 505–513. DOI: 10.1007/s00484-011-0410-0
  21. Kissling L.S., Akerman A.P., Cotter J.D. (2020) Heat-induced hypervolemia: Does the mode of acclimation matter and what are the implications for performance at Tokyo 2020? Temperature, 7(2): 129–148. DOI: 10.1080/23328940.2019.1653736
  22. Klass M., Duchateau J., Rabec S., Meeusen R., Roe-lands B. (2016) Noradrenaline Reuptake Inhibition Impairs Cortical Output and Limits Endurance Time. Med. Sci. Sports. Exerc., 48(6): 1014–1023. DOI: 10.1249/MSS.0000000000000879
  23. Konefał M., Chmura J., Charmas M., Kotowska J., Błażejczyk K., Chmura P. (2022) Lactate threshold and psychomotor fatigue threshold in hot conditions. Recommendations for soccer players participating in the Qatar World Cup 2022. Int. J. Environ. Res. Public. Health., 19(24): 17028. DOI: 10.3390/ijerph192417028
  24. Konefał M., Chmura P., Zacharko M., Baranowski J., Andrzejewski M., Błażejczyk K., Chmura J. (2021) The influence of thermal stress on the physical and technical activities of soccer players: lessons from the 2018 FIFA World Cup in Russia. Int. J. Biometeorol., 65: 1291–1298. DOI: 10.1007/s00484-020-01964-3
  25. Lin T.W., Kuo Y.M. (2013) Exercise Benefits Brain Function: The Monoamine Connection. Brain. Sci., 3(4): 39–53. DOI: 10.3390/brainsci3010039
  26. Meeusen R., de Meirleir K. (1995) Exercise and Brain Neurotransmission. Sports. Med., 20(3): 160–188. DOI: 10.2165/00007256-199520030-00004
  27. Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F. (2006) Central fatigue: the serotonin hypothesis and beyond. Sports. Med., 36(10): 881–909. DOI: 10.2165/00007256-200636100-00006
  28. Mohr M., Mujika I., Santisteban J., Randers M.B., Bischoff R., Solano R., Hewitt A., Zubillaga A., Peltola E., Krustrup P. (2010) Examination of fatigue development in elite soccer in a hot environment: a multi-experimental approach. Scand. J. Med. Sci. Sports, 20: 125–132. DOI: 10.1111/j.1600-0838.2010.01217.x
  29. Mohr M., Nybo L., Grantham J., Racinais S. (2012) Physiological Responses and Physical Performance during Football in the Heat. PLoS. ONE., 7(6): e39202. DOI: 10.1371/journal.pone.0039202
  30. Mota T., Silva R., Clemente F.M. (2023) Holistic soccer profile by position: a theoretical framework. Hum. Mov., 24(1): 4-20. DOI: 10.5114/hm.2023.110751
  31. Nassis G.P., Brito J., Dvorak J., Chalabi H., Racinais S. (2015) The association of environmental heat stress with performance: analysis of the 2014 FIFA World Cup Brazil. Br. J. Sports. Med., 49(9): 609–613. DOI: 10.1136/bjsports-2014-094449
  32. Nielsen B. (1996) Olympics in Atlanta: a fight against physics. Med. Sci. Sports Exerc., 28(6): 665-668. DOI: 10.1097/00005768-199606000-00004
  33. Nybo L. (2010) CNS fatigue provoked by prolonged exercise in the heat. Front. Biosci., 2(2): 779–792. DOI: 10.2741/e138
  34. Nybo L., Rasmussen P., Sawka M.N. (2014) Performance in the heat – physiological factors of importance for hyperthermia induced fatigue. Compr. Physiol., 4: 657–689. DOI: 10.1002/cphy.c130012
  35. Özgünen K.T., Kurdak S.S., Maughan R.J., Zeren Ç., Korkmaz S., Yazιcι Z., Ersöz G., Shirreffs S.M., Binnet M.S., Dvorak J. (2010) Effect of hot environmental conditions on physical activity patterns and temperature response of football players. Scand. J. Med. Sci. Sports, 20: 140–147. DOI: 10.1111/j.1600-0838.2010.01219.x
  36. Périard J.D., DeGroot D., Jay O. (2022) Exertional heat stroke in sport and the military: Epidemiology and mitigation. Exp. Physiol., 107(10): 1111–1121. DOI: 10.1113/EP090686
  37. Périard J.D., Eijsvogels T.M.H., Daanen H.A.M. (2021) Exercise under heat stress: Thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev., 101(4): 1873–1979. DOI:10.1152/physrev.00038.2020
  38. Piil J.F., Lundbye-Jensen J., Trangmar S.J., Nybo L. (2017) Performance in complex motor tasks deteriorates in hyperthermic humans. Temperature, 4(4): 20–428. DOI: 10.1080/23328940.2017.1368877
  39. Racinais S., Alonso J.M., Coutts A.J., Flouris A., Girard O., González-Alonso J., Hausswirth C., Jay O., Lee J.K.W., Mitchell N., Nassis G.P., Nybo L., Pluim B.M., Roe-lands B., Sawka M.N., Wingo J.E., Périard J.D. (2015) Consensus recommendations on training and competing in the heat. Scand. J. Med. Sci. Sports, 25: 6–19. DOI: 10.1136/bjsports-2015-094915
  40. Robertson C., Marino F.E. (2016) A role for the pre-frontal cortex in exercise tolerance and termination. J. Appl. Physiol., 120(4): 464–466. DOI: 10.1152/japplphysiol.00363.2015
  41. Sirangelo B., Caloiero T., Coscarelli R., Ferrari E., Fusto F. (2020) Combining stochastic models of air temperature and vapour pressure for the analysis of the bioclimatic comfort through the Humidex. Sci. Rep., 10(1): 11395. DOI: 10.1038/s41598-020-68297-4
  42. Smolander J. (1987) Circulatory and thermal adjustments to dynamic exercise in different combinations of ambient temperature, air humidity and clothing. Original Reports, Institute of Occupational Health, University of Kuopio.
  43. Steinberg L.L., Sposito M.M.M., Lauro F.A.A., Tufik S., Mello M.T., Naffah-Mazzacoratti M.G., Cavalheiro E.A., Silva A.C. (1998) Serum level of serotonin during rest and during exercise in paraplegic patients. Spinal. Cord., 36(1): 18–20. DOI: 10.1038/sj.sc.3100516
  44. Szymczak R.K., Błażejczyk K. (2021) Heat Balance When Climbing Mount Everest. Front. Physiol., 12: 765631. DOI: 10.3389/fphys.2021.765631
  45. Tomporowski P.D. (2003) Effects of acute bouts of exercise on cognition. Acta Psychol., 112(3): 297–324. DOI: 10.1016/s0001-6918(02)00134-8
  46. Tyler C.J., Reeve T., Hodges G.J., Cheung S.S. (2016) The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Med., 46(11): 1699–1724. DOI: 10.1007/s40279-016-0538-5
  47. Wingo J.E. (2015) Exercise intensity prescription during heat stress: A brief review. Scand. J. Med. Sci. Sports, 25: 90–95. DOI: 10.1111/sms.12381
  48. Zheng X., Takatsu S., Ishikawa R., Hasegawa H. (2018) Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J. Therm. Biol., 71: 123–127. DOI: 10.1016/j.jtherbio.2017.11.003
Language: English
Page range: 257 - 264
Submitted on: Mar 22, 2024
Accepted on: Aug 13, 2024
Published on: Oct 18, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Marek Konefał, Krzysztof Błażejczyk, Jan Chmura, Piotr Żmijewski, Paweł Różański, Błażej Szmigiel, Paweł Chmura, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.