Amprasi E., Vernadakis N., Zetou E., Antoniou, P. (2021) Effect of a Full Immersive Virtual Reality Intervention on Whole Body Reaction Time in Children. Int. J. Latest Res. Hum. Soc. Sci., 4(8): 15-20.
Antão J.Y.F.D.L., Abreu L.C.D., Barbosa R.T.D.A., Crocetta T.B., Guarnieri R., Massetti T., Antunes T.P.C., Tonks J., Monteiro C.B.D.M., (2020) Use of augmented reality with a motion-controlled game utilizing alphabet letters and numbers to improve performance and reaction time skills for people with autism spectrum disorder. Cyberpsychol. Behav. Soc. Netw., 23(1): 16-22. DOI: 10.1089/cyber.2019.0103.
Asseman F., Bronstein A.M., Gresty M.A. (2007) Using vibrotactile feedback of instability to trigger a forward compensatory stepping response. J. Neurol., 254: 1555-1561. DOI: 10.1007/s00415-007-0587-7.
Balakrishnan G., Uppinakudru G., Girwar Singh G., Bangera S., Dutt Raghavendra A., Thangavel D. (2014) A comparative study on visual choice reaction time for different colors in females. Neurol. Res. Int. DOI: 10.1155/2014/301473.
Batra A., Vyas S., Gupta J., Gupta K., Hada R. (2014) A comparative study between young and elderly Indian males on audio-visual reaction time. Indian J. Sci. Res. Technol., 2(1): 25-29.
Benzy V.K., Vinod A.P., Subasree R., Alladi S., Raghavendra K. (2020) Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 28(12): 3051-3062. DOI: 10.1109/TNSRE.2020.3039331.
Clark J.F., Ellis J.K., Bench J., Khoury J., Graman P. (2012) High-performance vision training improves batting statistics for University of Cincinnati baseball players. PLoS One, 7(1): e29109. DOI: 10.1371/journal. pone.0029109.
Das S., Gandhi A., Mondal S. (1997) Effect of premenstrual stress on audiovisual reaction time and audiogram. Indian J. Physiol. Pharmacol., 41(1): 67-70.
Farah M.J. (1985) Psychophysical evidence for a shared representational medium for mental images and percepts. J. Exp. Psychol. Gen., 114(1): 91. DOI: 10.1037/0096-3445.114.1.91.
Guillot A., Collet C. (2005) Contribution from neuro-physiological and psychological methods to the study of motor imagery. Brain Res. Rev., 50(2): 387-397. DOI: 10.1016/j.brainresrev.2005.09.004.
Häger-Ross C., Schieber M.H. (2000) Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J. Neurosci., 20(22): 8542-8550. DOI: 10.1523/JNEUROSCI.20-22-08542.2000.
Isaac A., Marks D.F., Russell D.G. (1986) An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ). J. Ment. Imagery.
Jain A., Bansal R., Kumar A., Singh K.D. (2015) A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int. J. Appl. Basic Med. Res., 5(2): 124-127. DOI: 10.4103/2229-516X.157168.
Jehu D., Paquet N., Lajoie Y. (2017) Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults. Gait Posture, 52: 227-232. DOI: 10.1016/j.gaitpost.2016.12.006.
Lakshminarayanan K., Ramu V., Rajendran J., Chandrasekaran K.P., Shah R., Daulat S.R., Moodley V., Madathil D., (2023) The effect of tactile imagery training on reaction time in healthy participants. Brain Sci., 13(2): 321. DOI: 10.3390/brainsci13020321. 2023.
Lakshminarayanan K., Shah R., Daulat S.R., Mood-ley V., Yao Y., Sengupta P., Ramu V., Madathil D., (2023) Evaluation of EEG oscillatory patterns and classification of compound limb tactile imagery. Brain Sci., 13(4): 656. DOI: 10.3390/brainsci13040656.
Lang C.E., Schieber M.H. (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J. Neurophysiol., 92(5): 2802-2810. DOI: 10.1152/jn.00480.2004.
Lawrence D.G., Kuypers H.G. (1968) The functional organization of the motor system in the monkey: I. The effects of bilateral pyramidal lesions. Brain, 91(1): 1-14. DOI: 10.1093/brain/91.1.1.
Li Z.M., Latash M.L., Zatsiorsky V.M. (1998) Force sharing among fingers as a model of the redundancy problem. Exp. Brain Res., 119: 276-286. DOI: 10.1007/s002210050343.
Lotte F., Bougrain L., Cichocki A., Clerc M., Congedo M., Rakotomamonjy A., Yger F. (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng., 15(3): 031005. DOI: 10.1088/1741-2552/aab2f2.
Machado T.C., Carregosa A.A., Santos M.S., Ribeiro N.M.D.S., Melo A. (2019) Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review. Top. Stroke Rehabil., 26(7): 548-553. DOI: 10.1080/10749357.2019.1627716.
Mawarti S., Rohmansyah N.A., Hiruntrakul A. (2021) Effect of volleyball training program to improve reaction time. Int. J. Hum. Mov. Sports Sci., 9: 1314-1318. DOI: 10.13189/saj.2021.090627.
Meng F., Ho C., Gray R., Spence C. (2015) Dynamic vibrotactile warning signals for frontal collision avoidance: towards the torso versus towards the head. Ergonomics, 58(3): 411-425. DOI: 10.1080/00140139.2014.976278.
Mizuguchi N., Nakata H., Uchida Y., Kanosue K. (2012) Motor imagery and sport performance. J. Phys. Fitness Sports Med., 1(1): 103-111. DOI: 10.7600/jpfsm.1.103.
Mohan M., Thombre D.P., Das A.K., Subramanian N., Chandrasekar S. (1984). Reaction time in clinical diabetes mellitus. Indian J. Physiol. Pharmacol., 28(4): 311-314.
Ng A.W., Chan A.H. (2012) Finger response times to visual, auditory and tactile modality stimuli. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 2, pp. 1449-1454). IMECS.
Oftadehal M., Movahedi Y., Sepahvand R. (2017) The effectiveness of neurofeedback training on improving reaction time performance in football athletes. Community Health J., 11(2): 1-9. DOI: 10.22123/CHJ.2018.85310.
Okubo Y., Schoene D., Lord S.R. (2017) Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br. J. Sports Med., 51(7): 586-593. DOI: 10.1136/bjsports-2015-095452.
Palermi S., Sacco A.M., Belviso I., Marino N., Gambardella F., Loiacono C., Sirico F. (2020) Effectiveness of Tai Chi on balance improvement in type 2 diabetes patients: a systematic review and meta-analysis. J. Aging Phys. Act., 28(5): 787-797. DOI: 10.1123/japa.2019-0242.
Papic C., Sinclair P., Fornusek C., Sanders R. (2018) The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. DOI: 10.1080/14763141.2017.1409260.
Pearson J. (2019) The human imagination: the cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci., 20(10): 624-634. DOI: 10.1038/s41583-019-0202-9.
Pearson J., Clifford C. W., Tong F. (2008) The functional impact of mental imagery on conscious perception. Curr. Biol., 18(13): 982-986. DOI: 10.1016/j.cub.2008.05.048.
Peon A.R., Prattichizzo D. (2013) Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli. In 2013 world haptics conference (WHC) (pp. 657-661). IEEE. DOI: 10.1109/WHC.2013.6548486.
Pfurtscheller G., Woertz M., Müller G., Wriessnegger S., Pfurtscheller K. (2002) Contrasting behavior of beta event-related synchronization and somatosensory evoked potential after median nerve stimulation during finger manipulation in man. Neurosci. Lett., 323(2): 113-116. DOI: 10.1016/S0304-3940(02)00119-2.
Pourazar M., Mirakhori F., Hemayattalab R., Bagherzadeh F. (2018) Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Dev. Neurorehabil., 21(8): 515-520. DOI: 10.1080/17518423.2017.1368730.
Ramu V., Lakshminarayanan K. (2023) Enhanced motor imagery of digits within the same hand via vibro-tactile stimulation. Front. Neurosci., 17: 1152563. DOI: 10.3389/fnins.2023.1152563.
Reilly K.T., Hammond G.R. (2000) Independence of force production by digits of the human hand. Neurosci. Lett., 290(1): 53-56. DOI: 10.1016/S0304-3940(00)01328-8
Ruffino C., Papaxanthis C., Lebon F. (2017) Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neurosci., 341: 61-78. DOI: 10.1016/j.neuroscience.2016.11.023.
Taimela S. (1991) Factors affecting reaction-time testing and the interpretation of results. Percept. Mot. Skills, 73(3 suppl): 1195-1202. DOI: 10.2466/pms.1991.73.3f.1195.
Yao L., Jiang N., Mrachacz-Kersting N., Zhu X., Farina D., Wang Y. (2022) Performance variation of a somatosensory BCI based on imagined sensation: a large population study. IEEE Trans. Neural Syst. Rehabil. Eng., 30: 2486-2493. DOI: 10.1109/TNSRE.2022.3198970.
Yao L., Mrachacz-Kersting N., Sheng X., Zhu X., Farina D., Jiang N. (2018) A multi-class BCI based on somato-sensory imagery. IEEE Trans. Neural Syst. Rehabil. Eng., 26(8): 1508-1515. DOI: 10.1109/TNSRE.2018.2848883.
Yao L., Sheng X., Mrachacz-Kersting N., Zhu X., Farina D., Jiang N. (2017) Decoding covert somatosensory attention by a BCI system calibrated with tactile sensation. IEEE Trans. Biomed. Eng., 65(8): 1689-1695. DOI: 10.1109/TBME.2017.2762461.
Yildirim N.Ü., Erbahçeci F., Ergun N., Pitetti K.H., Beets M.W. (2010) The effect of physical fitness training on reaction time in youth with intellectual disabilities. Percept. Mot. Skills, 111(1): 178-186. DOI: 10.2466/06.10.11.13.15.25.PMS.111.4.178-186.