Andre T.L., Green J.M., Gann J.J., O’Neal E.K., Coates T.E. (2015) Effects of caffeine on repeated upper/lower body Wingates and handgrip performance. Int. J. Exerc. Sci., 8(3): 243-255. DOI: 10.1249/01.mss.0000495712.08913.cf
Baker U.C., Heath E.M., Smith D.R., Oden G.L. (2011) Development of Wingate anaerobic test norms for highly-trained women. J. Exerc. Physiol. Online, 14(2): 68-79.
Bar-Or O. (1987) The Wingate anaerobic test: an update on methodology, reliability, and validity. Sports Med., 4: 381-394. DOI: 10.2165/00007256-198704060-00001
Bar-Or O., Dotan R., Inbar O., Rothstein A., Karlsson J., Tesch P. (1978) Anaerobic capacity and muscle fiber type distribution in man. Int. J. Sports Med., 1: 82-85. DOI: 10.1055/s-2008-1034636
Basist L. (2021) Wingate muscular power test reference values for active healthy adults ages 19–29: Normative data and differences between sexes [Unpublished master’s thesis]. Humboldt State University.
Bradley A.L., Ball T.E. (1992) The Wingate test: Effect of load on the power outputs of female athletes and non-athletes. J. Strength Cond. Res., 6(4): 193-199.
Beneke R., Pollmann C.H., Bleif I., Leithäuser R., Hütler M. (2002) How anaerobic is the Wingate anaerobic test for humans? Eur. J. Appl. Physiol., 87: 388-392. DOI: 10.1007/s00421-002-0622-4
Blimkie C.J., Roache P., Hay J.T., Bar-Or O. (1988) Anaerobic power of arms in teenage boys and girls: relationship to lean tissue. Eur. J. Appl. Physiol. Occup. Physiol., 57: 677-683. DOI: 10.1007/BF01075988
Castañeda-Babarro A. (2021) The Wingate anaerobic test, a narrative review of the protocol variables that affect the results obtained. Appl. Sci., 11(16): 7417. DOI: 10.26773/mjssm.220902
Coppin E., Heath E.M., Bressel E., Wagner D.R. (2012) Wingate anaerobic test reference values for male power athletes. Int. J. Sports Physiol. Perform., 7(3): 232-236. DOI: 10.1123/ijspp.7.3.232
Franco B.L., Signorelli G.R., Trajano G.S., Costa P.B., de Oliveira C.G. (2012) Acute effects of three different stretching protocols on the Wingate test performance. J. Sports Sci. Med., 11(1): 1-7.
Gierach G.L., Chang S., Brinton L.A., Lacey J.V., Hollenbeck A.R., Schatzkin A., Leitzmann M.F. (2009) Physical activity, sedentary behaviour, and endometrial cancer risk in the NIH-AARP diet and health study. Int. J. Cancer, 124(9): 2139-2147. DOI: 10.1002/ijc.24059
Gipson A.S., Jones J., Ritchey E., Murphy C., Grimes H., Coons J.M. (2014) The acute effects of a dynamic stretching protocol on Wingate performance. Int. J. Exerc. Sci., 7(4): 271-277.
Glaister M., Muniz-Pumares D., Patterson S.D., Foley P., McInnes G. (2015) Caffeine supplementation and peak anaerobic power output. Eur. J. Sport Sci., 15(5): 400-406. DOI: 10.1080/17461391.2014.962619
Granier P., Mercier B., Mercier J., Anselme F., Préfaut C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur. J. Appl. Physiol. Occup. Physiol., 70(1): 58-65. DOI: 10.1007/BF00601809
Hachana Y., Attia A., Nassib S., Shephard R.J., Souhaiel Chelly M. (2012) Test-retest reliability, criterion-related validity, and minimal detectable change of score on an abbreviated Wingate test for field sport participants. J. Strength Cond. Res., 26(5): 1324-1330. DOI: 10.1519/JSC.0b013e3182305485
Harbili S. (2015) The effect of different recovery duration on repeated anaerobic performance in elite cyclists. J. Hum. Kinet., 49(1): 171-178. DOI: 10.1515/hukin-2015-0119
Howard R.A., Freedman D.M., Park Y., Hollenbeck A., Schatzkin A., Leitzmann M.F. (2008) Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP diet and health study. Cancer Causes Control, 19(9): 939-953. DOI: 10.1007/s10552-008-9159-0
Kim J., Cho H.-C., Jung H.-S., Yoon J.-D. (2011). Influence of performance level on anaerobic power and body composition in elite male judoists. J. Strength Cond. Res., 25(5): 1346-1354. DOI: 10.1519/JSC.0b013e3181d6d97c
Legaz-Arrese A., Munguía-Izquierdo D., Carranza-García L.E., Torres-Dávtla C.G. (2011) Validity of the Wingate anaerobic test for the evaluation of elite runners. J. Strength Cond. Res., 25(3): 819-824. DOI: 10.1519/JSC.0b013e3181c1fa71
Lelieveld O.T., van Brussel M., Takken T., van Weert E., van Leeuwen M. A., Armbrust W. (2007) Aerobic and anaerobic exercise capacity in adolescents with juvenile idiopathic arthritis. Arthritis & Rheum., 57(6): 898-904. DOI: 10.1002/art.22897
Maud P.J, Shultz B.B. (1989) Norms for the Wingate anaerobic test with comparison to another similar test. Res. Q. Exerc. Sport, 60(2): 144-151. DOI: 10.1080/02701367.1989.10607429
Medbo J., Tabata I. (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol., 67: 1881-1886. DOI: 10.1152/jappl.1989.67.5.1881
Miller D.K., Kieffer S.H., Kemp H.E., Torres S.E. (2011) Off-season physiological profiles of elite National Collegiate Athletic Association division III male soccer players. J. Strength Cond. Res., 25(6): 1508-1513. DOI: 10.1519/JSC.0b013e3181dba3df
Nara K., Kumar P., Rathee R., Kumar J. (2022). The compatibility of running-based anaerobic sprint test and Wingate Anaerobic test: A systematic review and meta-analysis. Pedagogy. Phys. Cult. Sports, 26(2): 134-143. DOI: 10.15561/26649837.2022.0208
Stickley C.D., Hetzler R.K., Kimura I.F. (2008) Prediction of anaerobic power values from an abbreviated WAnT protocol. J. Strength Cond. Res., 22(3): 958-965. DOI: 10.1519/JSC.0b013e31816a906e
Takken T., van der Net J., Helders P.J.M. (2003). Relationship between functional ability and physical fitness in juvenile idiopathic arthritis patients. Scand. J. Rheumatol., 32(3): 174-178. DOI: 10.1080/03009740310002524
Zupan M.F., Arata A.W., Dawson L.H., Wile L.A., Payn T.L., Hannon M.E. (2009) Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J. Strength Cond. Res., 23(9): 2598-2604. DOI: 10.1519/JSC.0b013e3181b1b21b