Have a personal or library account? Click to login
Bone mineral density in the various regions of the skeleton in women with subclinical hypothyroidism: the effect of biological factors, bone turnover markers and physical activity
Abrahamsen B., Jørgensen H.L., Laulund A.S., Nybo M., Bauer D.C., Brix T.H., Hegedüs L. (2015) The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J. Bone. Miner. Res., 30(5): 898–905. DOI: 10.1002/jbmr.2416.
Akkurt M., Ökmen M.Ş., Polat M. (2023) Effects of eight-week aerobic exercises combined with resistance training on cardiovascular risk factors in women. Biomed. Hum. Kinet., 15(1): 1–8. DOI: 10.2478/bhk-2023-0001.
Bassett J.H.D., Williams G.R. (2016) Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocrine. Rev., 37(2): 135–187. DOI: 10.1210/er.2015-1106.
Beck B.R., Daly R.M., Singh M.A., Taaffe D.R. (2017) Exercise and sports science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport., 20: 438–445. DOI: 10.1016/j.jsams.2016.10.001.
Benedetti M.G., Furlini G., Zati A., Mauro G.L. (2018) The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. Biomed. Res. Int., DOI: 10.1155/2018/4840531.
Bertoli A., Fusco A., Andreoli A., Magnani A., Tulli A., Lauro D., De Lorenzo A. (2002) Effect of subclinical hypothyroidism and obesity on whole-body and regional bone mineral content. Horm. Res., 57(3-4): 79–84. DOI: 10.1159/000057956.
Bhattoa H.P., Cavalier E., Eastell R., Heijboer A.C., Jørgensen N.R., Makris K., Ulmer C.Z., Kanis J.A., Cooper C., Silverman S.L., Vasikaran S.D. IFCC-IOF Committee for Bone Metabolism (2021) Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin. Chim. Acta., 515: 16–20. DOI: 10.1016/j. cca.2020.12.023.
Bolamperti S., Villa I., Rubinacci A. (2022) Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone. Res., 10: 48. DOI: 10.1038/s41413-022-00219-8.
Daly R.M., Dalla Via J., Duckham R.L., Fraser S.F., Helge E.W. (2019) Exercise for the prevention of osteoporosis in postmenopausal women: an evidence-based guide to the optimal prescription. Braz. J. Phys. Ther., 23: 170–180. DOI: 10.1016/j.bjpt.2018.11.011.
Delaisse J.M., Andersen T.L., Kristensen H.B., Jensen P.R., Andreasen C.M., Søe K. (2020) Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone, 141: 115628. DOI: 10.1016/j. bone.2020.115628.
Demartini Ade A., Kulak C.A., Borba V.C., Cat M.N., Dondoni R.S., Sandrini R., Nesi-França S., Lacerda Filho L.D. (2007) Bone mineral density of children and adolescents with congenital hypothyroidism. Arq. Bras. Endocrinol. Metabol., 51(7): 1084–1092. Portuguese. DOI: 10.1590/s0004-27302007000700010.
El Hadidy H.M., Ghonaim M., El Gawad S., El Atta M.A. (2011) Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men. BMC Endocr. Disord., 11: 15. DOI: 10.1186/1472-6823-11-15.
Herbert A.J., Williams A.G., Hennis P.J., Erskine R.M., Sale C., Day S.H., Stebbings G.K. (2019) The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur. J. Appl. Physiol., 119(1): 29–47. DOI: 10.1007/s00421-018-4007-8.
Kemmler W., Bebenek M., Kohl M., Von Stengel S. (2015) Exercise and fractures in postmenopausal women. Final results of the controlled erlangen fitness and osteoporosis prevention study (EFOPS). Osteoporos. Int., 26: 2491–2499. DOI: 10.1007/s00198-015-3165-3.
Kim K.M., Choi S.H., Lim S., Moon J.H., Kim J.H., Kim S.W., Jang H.C, Shin C.S. (2014) Interactions between dietary calcium intake and bone mineral density or bone geometry in a low calcium intake population (KNHANES IV 2008–2010). J. Clin. Endocrinol. Metab., 99(7): 2409–2417. DOI: 10.1210/jc.2014-1006.
Kopiczko A. (2020) Determinants of bone health in adults Polish women: The influence of physical activity, nutrition, sun exposure and biological factors. PLoS One, 15(9): e0238127. DOI: 10.1371/journal.pone.0238127.
Kopiczko A., Cieplińska J. (2022) Forearm bone mineral density in adult men after spinal cord injuries: impact of physical activity level, smoking status, body composition, and muscle strength. BMC Musculoskelet. Disord., 23: 81. DOI: 10.1186/s12891-022-05022-4.
Kumar A., Mittal S., Orito S., Ishitani K., Ohta H. (2010) Impact of dietary intake, education, and physical activity on bone mineral density among North Indian women. J. Bone Miner. Metab., 28: 192–201. DOI: 10.1007/s00774-009-0118-y.
Kuo T.R., Chen C.H. (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark. Res., 5: 18. DOI: 10.1186/s40364-017-0097-4.
Lee P.H., Macfarlane D.J., Lam T.H., Stewart S.M. (2011) Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act., 8: 115. DOI: 10.1186/1479-5868-8-115.
Li X.P., Li X.Y., Yang M.H., Zhu S.W., Wu X.B., Zhang P. (2021) Changes of bone turnover markers after elderly hip fracture surgery. J. Bone. Miner. Metab., 39(2): 237–244. DOI: 10.1007/s00774-020-01140-y.
Muir J.M., Ye C., Bhandari M., Adachi J.D., Thabane L. (2013) The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: a retrospective analysis from the Canadian multi-centre osteoporosis study. BMC Musculoskelet. Disord., 14: 253. DOI: 10.1186/1471-2474-14-253.
Nagata M., Suzuki A., Sekiguchi S., Ono Y., Nishiwaki-Yasuda K., Itoi T., Yamamoto S., et al. (2007) Subclinical hypothyroidism is related to lower heel QUS in post-menopausal women. Endocr. J., 54(4): 625–630. DOI: 10.1507/endocrj.k06-201.
Nyrć M., Lopuszanska-Dawid M. (2023) Physical fitness and somatic structure in adolescent taekwondo athletes and untrained peers. Biomed. Hum. Kinet., 15: 63–73. DOI: 10.2478/bhk-2023-0009.
Segna D., Bauer D.C., Feller M., Schneider C., Fink H.A., Aubert C.E., Collet T.H., da Costa B.R., et al. (2018) Thyroid Studies Collaboration. Association between sub-clinical thyroid dysfunction and change in bone mineral density in prospective cohorts. J. Intern. Med., 283(1): 56–72. DOI: 10.1111/joim.12688.
Shetty S., Kapoor N., Bondu J.D., Thomas N., Paul T.V. (2016) Bone turnover markers: Emerging tool in the management of osteoporosis. Indian. J. Endocrinol. Metab., 846–852. DOI: 10.4103/2230-8210.192914.
Tanriverdi A., Ozcan Kahraman B., Ozsoy I., Bayraktar F., Ozgen Saydam B., Acar S., Ozpelit E., Akdeniz B., Savci S. (2019) Physical activity in women with sub-clinical hypothyroidism. J. Endocrinol. Invest., 42(7): 779–785. DOI: 10.1007/s40618-018-0981-2.
Tuchendler D., Bolanowski M. (2013) Assessment of bone metabolism in premenopausal females with hyper-thyroidism and hypothyroidism. Endokrynol. Pol., 64(1): 40–44.
Vasikaran S., Eastell R., Bruyère O., Foldes A.J., Garnero P., Griesmacher A., McClung M., Morris H.A., et al. (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int., 22: 391–420. DOI: 10.1007/s00198-010-1501-1.
Vestergaard P., Mosekilde L. (2002) Fractures in patients with hyperthyroidism and hypothyroidism: A nationwide follow-up study in 16,249 patients. Thyroid., 12(5): 411–419. DOI: 10.1089/105072502760043503.
Wallace B.A., Cumming R.G. (2000) Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif. Tissue. Int., 67(1): 10–18. DOI: 10.1007/s00223001089.
Yan Z., Huang H., Li J., Wang J. (2016) Relationship between subclinical thyroid dysfunction and the risk of fracture: A meta-analysis of prospective cohort studies. Osteoporos. Int., 27(1): 115-125. DOI: 10.1007/s00198-015-3221-z.