Have a personal or library account? Click to login
Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data Cover

Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data

Open Access
|Jun 2021

References

  1. 1. Afef B.B., Limam M. (2018) Ensemble feature selection for high dimensional data: a new method and a comparative study. Adv. Data Anal. Classif. 12(4): 937–952.
  2. 2. Beaulieu M.L., Lamontagne M., Beaulé P.E. (2010) Lower limb biomechanics during gait do not return to normal following total hip arthroplasty. Gait & Posture 32(2): 269–273.10.1016/j.gaitpost.2010.05.007
  3. 3. Begg R., Kamruzzaman J. (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech., 38(3): 401–408.10.1016/j.jbiomech.2004.05.002
  4. 4. Bennasar M., Hicks Y., Setchi R. (2015) Feature selection using Joint Mutual Information Maximisation. Expert Syst. Appl., 42(22): 8520–8532.10.1016/j.eswa.2015.07.007
  5. 5. Breiman L. (2001) Random Forests. Machine Learning 45: 5–32.10.1023/A:1010933404324
  6. 6. Bzdok D., Altman N., Krzywinski M. (2018) Statistics versus machine learning. Nature Methods 15(4): 233–234.10.1038/nmeth.4642
  7. 7. Cannas L.M., Dessì N., Pes B. (2013) Assessing similarity of feature selection techniques in high-dimensional domains. Pattern Recognit. Lett., 34(12): 1446–1453.10.1016/j.patrec.2013.05.011
  8. 8. Cappozzo A., Catani F., Della Croce U., Leardini A. (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin.l Biomech., (Bristol, Avon) 10(4): 171–178.10.1016/0268-0033(95)91394-T
  9. 9. Carse B., Meadows B., Bowers R., Rowe P. (2013) Affordable clinical gait analysis: an assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiother., 99(4): 347–351.10.1016/j.physio.2013.03.00123747027
  10. 10. Chan H., Yang M., Wang H., Zheng H., McClean S., Sterritt R., Mayagoitia R.E. (2013) Assessing Gait Patterns of Healthy Adults Climbing Stairs Employing Machine Learning Techniques. Int. J. Intell. Syst., 28(3): 257–270.10.1002/int.21568
  11. 11. Chopra S., Kaufman K.R. (2018) Effects of Total Hip Arthroplasty on Gait. In: Müller B. and Wolf S. (eds.) Handbook of Human Motion, Springer, Cham, pp. 1–15. DOI: 10.1007/978-3-319-30808-1_81-1.10.1007/978-3-319-30808-1_81-1
  12. 12. Dindorf C., Teufl W., Taetz B., Bleser G., Fröhlich M. (2020) Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty. Sensors, 20: 16.10.3390/s20164385
  13. 13. Eskofier B.M., Federolf P., Kugler P.F., Nigg B.M. (2013) Marker-based classification of young-elderly gait pattern differences via direct PCA feature extraction and SVMs. Comput. Methods Biomech. Biomed. Engin., 16(4): 435–442.10.1080/10255842.2011.624515
  14. 14. Figueiredo J., Santos C.P., Moreno J.C. (2018) Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Med. Eng. Phys., 53: 1–12.10.1016/j.medengphy.2017.12.006
  15. 15. Foucher K.C. (2016) Gait abnormalities before and after total hip arthroplasty differ in men and women. J. Biomech., 49(14): 3582–3586.10.1016/j.jbiomech.2016.09.003
  16. 16. Głowiński S., Łosiński K., Kowiański P., Waśkow M., Bryndal A., Grochulska A. (2020) Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research. Diagnostics, (Basel, Switzerland) 10(6): 342.
  17. 17. Horstmann, T., Listringhaus, R., Haase, G.-B., Grau, S., Mündermann, A. (2013) Changes in gait patterns and muscle activity following total hip arthroplasty: A six-month follow-up. Clinical biomechanics (Bristol, Avon) 28, 7: 762–769.10.1016/j.clinbiomech.2013.07.001
  18. 18. Hutchinson L., Schwartz J.B., Morton A.M., Davis I.S., Deluzio K.J., Rainbow M.J. (2018) Operator Bias Errors Are Reduced Using Standing Marker Alignment Device for Repeated Visit Studies. J. Biomech. Eng., 140(4).10.1115/1.4038358
  19. 19. Ilias S., Tahir N.M., Jailani R., Hasan C.Z.C. (2017) Linear Discriminant Analysis in Classifying Walking Gait of Autistic Children. In: 2017 European Modelling Symposium (EMS). IEEE, pp. 67–72. DOI: 10.1109/EMS.2017.22.10.1109/EMS.2017.22
  20. 20. Kalousis A., Prados J., Hilario M. (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl. Inf. Syst., 12(1): 95–116.10.1007/s10115-006-0040-8
  21. 21. Kleemann R.U., Heller M.O., Stoeckle U., Taylor W.R., Duda G.N. (2003) THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses. J. Orthop. Res., 21(5): 767–774.10.1016/S0736-0266(03)00040-8
  22. 22. Laroche D., Tolambiya A., Morisset C., Maillefert J.F., French R.M., Ornetti P., Thomas E. (2014) A classification study of kinematic gait trajectories in hip osteoarthritis. Comput. Biol. Med., 55: 42–48.
  23. 23. Leardini A., Sawacha Z., Paolini G., Ingrosso S., Nativo R., Benedetti M.G. (2007) A new anatomically based protocol for gait analysis in children. Gait & Posture 26(4): 560–571.10.1016/j.gaitpost.2006.12.01817291764
  24. 24. Liu F.T., Ting K.M., Zhou Z.-H. (2012) Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data, 6(1): 1–39.10.1145/2133360.2133363
  25. 25. Liu H., Yu L. (2005) Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17(4): 491–502.
  26. 26. OECD. (2016) Health at a Glance: Europe 2016. State of Health in the EU Cycle. OECD Publishing, Paris.
  27. 27. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D. (2011) Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12: 2825–2830.
  28. 28. Peng H., Long F., Ding C. (2005) Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8): 1226–1238.10.1109/TPAMI.2005.159
  29. 29. Perron M., Malouin F., Moffet H., McFadyen B.J. (2000) Three-dimensional gait analysis in women with a total hiparthroplasty. Clin. Biomech., (Bristol, Avon), 15(7): 504–515.10.1016/S0268-0033(00)00002-4
  30. 30. Phinyomark A., Petri G., Ibáñez-Marcelo E., Osis S.T., Ferber R. (2018) Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng., 38(2): 244–260.10.1007/s40846-017-0297-2589745729670502
  31. 31. Rasch A., Dalén N., Berg H.E. (2010) Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop., 81(2): 183–188.10.3109/17453671003793204285215420367414
  32. 32. Seijo-Pardo B., Bolón-Canedo V., Alonso-Betanzos A. (2019) On developing an automatic threshold applied to feature selection ensembles. Inf. Fusion, 45: 227–245.10.1016/j.inffus.2018.02.007
  33. 33. Shakoor N., Sengupta M., Foucher K.C., Wimmer M.A., Fogg L.F., Block J.A. (2010) Effects of common foot-wear on joint loading in osteoarthritis of the knee. Arthritis Care Res., 62(7): 917–923.10.1002/acr.20165294027020191571
  34. 34. Teufl W., Taetz B., Miezal M., Lorenz M., Pietschmann J., Jöllenbeck T., Fröhlich M., Bleser G. (2019) Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features. Sensors, 19(22): 5006.10.3390/s19225006689146131744141
  35. 35. Thewlis D., Bishop C., Daniell N., Paul G. (2013) Next-Generation Low-Cost Motion Capture Systems Can Provide Comparable Spatial Accuracy to High-End Systems. J. Appl. Biomech., 29: 112–117.
  36. 36. Wang Z., Bao H.-W., Hou J.-Z. (2019) Direct anterior versus lateral approaches for clinical outcomes after total hip arthroplasty: a meta-analysis. J. Orthop. Surg. Res., 14(1): 1–11.10.1186/s13018-019-1095-z639031230808382
  37. 37. Wong T.-T. (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit., 48(9): 2839–2846.
Language: English
Page range: 177 - 186
Submitted on: Feb 22, 2021
|
Accepted on: Apr 16, 2021
|
Published on: Jun 4, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Carlo Dindorf, Wolfgang Teufl, Bertram Taetz, Stephan Becker, Gabriele Bleser, Michael Fröhlich, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.