Have a personal or library account? Click to login
Correlation between clinical tests for gait and stability using biomechanical variables in the gait of institutionalized elderly subjects Cover

Correlation between clinical tests for gait and stability using biomechanical variables in the gait of institutionalized elderly subjects

Open Access
|Jan 2021

References

  1. 1. Adachi D., Nishiguchi S., Fukutani N., Hotta T., Tashiro Y., Morino S., Shirooka H., Nozaki Y., Hirata H., Yamaguchi M., Yorozu A., Takahashi M., Aoyama T. (2017) Generating linear regression model to predict motor functions by use of laser range finder during TUG. J. Orthop. Sci., 22(3): 549-53. DOI: 10.1016/j.jos.2017.01.020.10.1016/j.jos.2017.01.02028254157
  2. 2. Baker R. Measuring walking. 1st ed. Hart HM, ed. London: Mac Keith Press; 2013.
  3. 3. Bonnyaud C., Pradon D., Vuillerme N., Bensmail D., Roche N. (2015) Spatiotemporal and kinematic parameters relating to oriented gait and turn performance in patients with chronic stroke. PLoS One, 10(6): e0129821. DOI: 10.1371/journal.pone.0129821.10.1371/journal.pone.0129821447488526091555
  4. 4. Bonnyaud C., Pradon D., Zory R., Bensmail D., Vuillerme N., Roche N. (2015) Gait parameters predicted by timed up and go performance in stroke patients. NeuroRehabilitation, 36(1): 73-80. DOI: 10.3233/NRE-141194.10.3233/NRE-14119425547769
  5. 5. Bowen M.E., Crenshaw J., Stanhope S.J. (2018) Balance ability and cognitive impairment influence sustained walking in an assisted living facility. Arch. Gerontol. Geriatr., 77: 133-141. DOI: 10.1016/j.archger.2018.05.004.10.1016/j.archger.2018.05.00429753298
  6. 6. Canseco K., Kruger K.M., Fritz J.M., Konop K.A., Tarima S., Marks R.M., Harris G.F. (2018) Distribution of segmental foot kinematics in patients with degenerative joint disease of the ankle. J. Orthop. Res., 36(6): 1739-1746. DOI: 10.1002/jor.23807.10.1002/jor.2380729139570
  7. 7. Chan Y.H., (2003) Biostatistics 104: correlational analysis. Singapore Med. J., 44(12): 614-619.
  8. 8. Cruz-Jimenez M. (2017) Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. N. Am., 28(4): 713-725. DOI: 10.1016/j.pmr.2017.06.005.10.1016/j.pmr.2017.06.00529031338
  9. 9. Edwards M.H., Jameson K., Denison H., Harvey N.C., Aihie Sayer A., Dennison E.M., Cooper C. (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone, 52(2): 541-547. DOI: 10.1016/j.bone.2012.11.006.10.1016/j.bone.2012.11.006365462823159464
  10. 10. Garcia-Pinillos F., Cozar-Barba M., Munoz-Jimenez M., Soto-Hermoso V., Latorre-Roman P. (2016) Gait speed in older people: an easy test for detecting cognitive impairment, functional independence, and health state. Psycho-geriatrics, 16(3):165-71. DOI: 10.1111/psyg.12133.10.1111/psyg.1213326114989
  11. 11. Gor-García-Fogeda M.D., Cano de la Cuerda R., Carratalá Tejada M., Alguacil-Diego I.M., Molina-Rueda F. (2016) Observational gait assessments in people with neurological disorders: a systematic review. Arch. Phys. Med. Rehabil., 97(1): 131-140. DOI: 10.1016/j. apmr.2015.07.018.
  12. 12. Hedman A-M.R., Fonad E., Sandmark H. (2013) Older people living at home: associations between falls and health complaints in men and women. J. Clin. Nurs., 22(19-20): 2945-2952. DOI: 10.1111/jocn.12279.10.1111/jocn.1227923829490
  13. 13. Herssens N., Verbecque E., Hallemans A., Vereeck L., Van Rompaey V., Saeys W. (2018) Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture, 64: 181-190. DOI: 10.1016/j.gaitpost.2018.06.012.10.1016/j.gaitpost.2018.06.01229929161
  14. 14. Johansson J., Nordström A., Nordström P. (2016) Greater fall risk in elderly women than in men is associated with increased gait variability during multitasking. J. Am. Med. Dir. Assoc., 17(6): 535-540. DOI: 10.1016/j. jamda.2016.02.009.
  15. 15. Kegelmeyer D.A., Kloos A.D., Thomas K.M., Kostyk S.K. (2007) Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys. Ther., 87(10): 1369-1378. DOI: 10.2522/ptj.20070007.10.2522/ptj.2007000717684089
  16. 16. Kluger B.M., Brown R.P., Aerts S., Schenkman M. (2014) Determinants of objectively measured physical functional performance in early to mid-stage Parkinson disease. PM R. 6(11): 992-998. DOI: 10.1016/j. pmrj.2014.05.013.
  17. 17. Kyrdalen I.L., Thingstad P., Sandvik L., Ormstad H. (2019) Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physi-other. Res. Int., 24(1): e1743. DOI: 10.1002/pri.1743.10.1002/pri.174330198603
  18. 18. Levine D., Richards J., Whittle M.W. (2012) Basic sciences. En: Whittle’s gait analysis. 5th ed. Edinburgh: Churchill Livingstone.
  19. 19. Levine D., Richards J., Whittle M.W. (2012) Whittle’s gait analysis. Elsevier Health Sciences.
  20. 20. Lord S.R., Murray S.M., Chapman K., Munro B., Tiedemann A. (2002) Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A Biol. Sci. Med. Sci., 57(8): M539-543. DOI: 10.1093/gerona/57.8.m539.10.1093/gerona/57.8.M53912145369
  21. 21. MacRae P.G., Schnelle J.F., Simmons S.F., Ouslander J.G. (1996) Physical activity levels of ambulatory nursing home residents. J. Aging Phys. Act., 4(3):264-278. DOI: 10.1123/japa.4.3.264.10.1123/japa.4.3.264
  22. 22. Maggio M., Ceda G.P., Ticinesi A., De Vita F., Gelmini G., Costantino C., Meschi T., Kressig R.W., Cesari M., Fabi M., Lauretani F. (2016) Instrumental and non-instrumental evaluation of 4-meter walking speed in older individuals. PLoS One, 11(4): e0153583. DOI: 10.1371/journal.pone.0153583.10.1371/journal.pone.0153583483172727077744
  23. 23. Mikos V., Yen S-C., Tay A., et al. (2018) Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. PLoS One, 13(6): e0199215. DOI: 10.1371/journal.pone.0199215.10.1371/journal.pone.0199215600548629912992
  24. 24. Mong Y., Teo T.W., Ng S.S. (2010) 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch. Phys. Med. Rehabil., 91(3): 407-413. DOI: 10.1016/j.apmr.2009.10.030.10.1016/j.apmr.2009.10.03020298832
  25. 25. Muraki S., Akune T., Oka H., Ishimoto Y., Nagata K., Yoshida M., Tokimura F., Nakamura K., Kawaguchi H., Yoshimura N. (2013) Physical performance, bone and joint diseases, and incidence of falls in Japanese men and women: a longitudinal cohort study. Osteoporos Int., 24(2): 459-466. DOI: 10.1007/s00198-012-1967-0.10.1007/s00198-012-1967-022434204
  26. 26. Park Y.S., Kim J.W., Kwon Y., Kwon M.S. (2018) Effect of age and sex on gait characteristics in the korean elderly people. Iran J. Public Health, 47(5): 666-673.
  27. 27. Podsiadlo D., Richardson S. (1991) The timed «Up & Go»: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc., 39(2): 142-148.10.1111/j.1532-5415.1991.tb01616.x1991946
  28. 28. Shumway-Cook A., Brauer S., Woollacott M. (2000) Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther., 80(9): 896-903. DOI: 10.1093/ptj/80.9.896.10.1093/ptj/80.9.896
  29. 29. Spagnuolo D.L., Jürgensen S.P., Iwama A.M., Dourado V.Z. (2010) Walking for the assessment of balance in healthy subjects older than 40 years. Gerontology, 56(5): 467-473. DOI: 10.1159/000275686.10.1159/000275686
  30. 30. Steffen T.M., Hacker T.A., Mollinger L. (2002) Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther., 82(2): 128-137. DOI: 10.1093/ptj/82.2.128.10.1093/ptj/82.2.128
  31. 31. Subsecretaria de Salud Pública de Chile. Manual de aplicación del axamen de medicina preventiva del adulto mayor.; 2010. Disponible en: http://www.minsal.cl/portal/url/item/ab1f81f43ef0c2a6e04001011e011907.pdf.
  32. 32. Tang P-F., Woollacott M.H. (1996) Balance control in older adults: training effects on balance control and the integration of balance control into walking. Adv. Psychol., 114(C): 339-367. DOI: 10.1016/S0166-4115(96)80015-X.10.1016/S0166-4115(96)80015-X
  33. 33. Tao W., Liu T., Zheng R., Feng H. (2012) Gait analysis using wearable sensors. Sensors (Basel). 12(2): 2255-2283. DOI: 10.3390/s120202255.10.3390/s120202255330416522438763
  34. 34. Thapa P.B., Gideon P., Fought R.L., Kormicki M., Ray W.A. (1994) Comparison of clinical and biomechanical measures of balance and mobility in elderly nursing home residents. J. Am. Geriatr. Soc., 42(5): 493-500. DOI: 10.1111/j.1532-5415.1994.tb04970.x.10.1111/j.1532-5415.1994.tb04970.x8176143
  35. 35. Whitney S.L., Wrisley D.M., Marchetti G.F., Gee M.A., Redfern M.S., Furman J.M. (2005) Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther., 85(10): 1034-1045. DOI: 10.1093/ptj/85.10.1034.10.1093/ptj/85.10.1034
  36. 36. Yelnik A., Bonan I. (2008) Clinical tools for assessing balance disorders. Neurophysiol. Clin., 38(6): 439-445. DOI: 10.1016/j.neucli.2008.09.008.10.1016/j.neucli.2008.09.00819026963
Language: English
Page range: 49 - 55
Submitted on: Jun 23, 2020
Accepted on: Dec 15, 2020
Published on: Jan 29, 2021
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Felipe H. Palma, Sebastián Cisternas Rodríguez, Francisco Vargas Buton, Marcela Olmos Nieva, Günther Redenz, Rodrigo Guzmán-Venegas, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.