Have a personal or library account? Click to login
Comparison of effect of aquatic interventions on cardiac modulation of obese young males in motion. A crossover trial Cover

Comparison of effect of aquatic interventions on cardiac modulation of obese young males in motion. A crossover trial

Open Access
|Jan 2021

References

  1. 1. An J., Lee I., Yi, Y. (2019) The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environmental Res. Pub. Health, 16(7): 1280.
  2. 2. Balasubramanian P., Hall D., Subramanian M. (2019) Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. GeroScience, 41: 13–24.10.1007/s11357-018-0048-5642321530519806
  3. 3. Blüher M. (2019) Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol., 15: 288–298.10.1038/s41574-019-0176-8
  4. 4. Carayannopoulos A.G., Han A., Burdenko I.N. (2020) The benefits of combining water and land-based therapy. J. Exerc. Rehab., 16(1): 20–26.10.12965/jer.1938742.371705647832161731
  5. 5. Chen O., Grabarnick A., Pilz-Burstein R. (2018) The effect of Watsu treatments on pain indices and on the quality of sleep in women diagnosed as fibromyalgia patients. JIPTS, 20(2): 14–24.
  6. 6. Choi K.H., Kim J., Kwon O.S., Kim M.J., Ryu Y.H., Park J.E. (2017) Is heart rate variability (HRV) an adequate tool for evaluating human emotions? – A focus on the use of the International Affective Picture System (IAPS) Psychiatry Res., 251: 192-196.10.1016/j.psychres.2017.02.02528213189
  7. 7. Chouchou F., Pichot V., Costes F., Guillot M., Barthélémy J.C., Bertoletti L., Roche F. (2020) Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur. J. Appl. Physiol., 120: 337–347.10.1007/s00421-019-04278-4
  8. 8. Codrons E., Bernardi N.F., Vandoni M., Bernardi L. (2014) Spontaneous Group Synchronization of Movements and Respiratory Rhythms. PLoS ONE 9(9): e107538.10.1371/journal.pone.0107538416264325216280
  9. 9. Cohen J. (1988) Statistical power analysis for the behavioral sciences, 2nd edition. Hillsdale, NJ: Erlbaum.
  10. 10. Constantini K., Stickford A., Bleich J.L., Mannheimer P.D., Levine B.D., Chapman, R. F. (2018) Synchronizing Gait with Cardiac Cycle Phase Alters Heart Rate Response during Running. Med. Sci. Sport Exerc., 50(5): 1046–1053.10.1249/MSS.0000000000001515602358929240004
  11. 11. Dull H. (2008) Watsu®: Freeing the Body in Water, Traf-ford Publishing, Victoria, Canada.
  12. 12. Esco M.R., Flatt A.A., Williford H.N. (2017) Postexercise heart rate variability following treadmill and cycle exercise: a comparison study. Clin. Physiol. Funct. Imaging, 37: 322–327.10.1111/cpf.12308
  13. 13. Elbers J., McCraty R. (2020) HeartMath approach to self-regulation and psychosocial well-being. J. Psychol. Afr., 30(1): 69–79.10.1080/14330237.2020.1712797
  14. 14. Gatti E., Calzolari E., Maggioni E., Obrist M. (2018) Emotional ratings and skin conductance response to visual, auditory and haptic stimuli. Sci. Data 5: 180120.10.1038/sdata.2018.120
  15. 15. Georgiou K., Larentzakis A.V., Khamis N.N., Alsuhaibani G.I., Alaska Y.A., Giallafos E.J. (2018) Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review, Folia Med., 60(1): 7-20.10.2478/folmed-2018-0012
  16. 16. Godfrey K.M., Juarascio A., Manasse S., Minassian A., Risbrough V., Afari N. (2019) Heart rate variability and emotion regulation among individuals with obesity and loss of control eating. Physiol. Behav., 199: 73–78.10.1016/j.physbeh.2018.11.009
  17. 17. Hall J.E., do Carmo J.M., da Silva A.A., Wang Z., Hall M.E. (2015) Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res., 116(6): 991–1006.10.1161/CIRCRESAHA.116.305697436308725767285
  18. 18. Hernando D., Garatachea N., Almeida R., Casajús J.A., Bailón R. (2018) Validation of heart rate monitor polar rs800 for heart rate variability analysis during exercise. J. Strength Cond. Res., 32: 716–725.10.1519/JSC.0000000000001662
  19. 19. Hernando D., Hernando A., Casajús J.A., Casajús J.A, Laguna P., Garatachea N., Bailón R. (2018) Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing. Med. Biol. Eng. Comput., 56: 781–794.10.1007/s11517-017-1724-9
  20. 20. Herring N., Kalla M., Paterson D.J. (2019) The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol., 16: 707–726.10.1038/s41569-019-0221-2
  21. 21. Hiromi M., Isao S., Eri E., Koutatsu M., Tadahiro K., Takeshi T. (2014) Heart rate variability and blood pressure among Japanese men and women: a community-based cross-sectional study. Hypertens. Res., 37(8): 779–884.10.1038/hr.2014.73
  22. 22. Hsieh T.C., Huang C.J., Hung T.M. (2010) Relationships between heart rate variability, attention, and athletic performance, Int. J. Sport Exerc. Psychol., 8(4): 473–475.10.1080/1612197X.2010.9671964
  23. 23. Jiyeon A.,, Insook L., Yunjeong Y. (2019) The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environ. Res. Public Health. 16: 1280.10.3390/ijerph16071280
  24. 24. Lambert E.A., Esler M.D., Schlaich M.P., Dixon J., Eikelis N., Lambert G.W. (2019) Obesity-Associated Organ Damage and Sympathetic Nervous Activity A Target for Treatment? Hypertension,. 73: 1150–1159.10.1161/HYPERTENSIONAHA.118.11676
  25. 25. Maczkowiak S., Hölter G., Otten H. (2007) Watsu® – the effect of differently accentuated movement therapy interventions on clinically depressive patients BG, Corpus ID: 79223084. 23(2): 58–64.10.1055/s-2007-960607
  26. 26. Meier M., Unternaehrer E., Dimitroff S.J., Benz A., Bentele U.U., Wenzel M., Schorpp S.M., Pruessner J. (2020) In search of a standardized protocol for parasympathetic nervous system activation.10.31234/osf.io/m85qc
  27. 27. Metelka R. (2014) Heart rate variability – current diagnosis of the cardiac autonomic neuropathy. A review. Biomed. Pap. Med. Fac., 158(3): 327-338.10.5507/bp.2014.02525004914
  28. 28. Mooventhan A., Nivethitha L. (2014) Scientific Evidence-Based Effects of Hydrotherapy on Various Systems of the Body. N. Am. J. Med. Sci., 6(5): 199–209.10.4103/1947-2714.132935404905224926444
  29. 29. Neeland I.J., Poirier P., Després J.P. (2018) Cardiovascular and Metabolic Heterogeneity of Obesity Clinical Challenges and Implications for Management Circulation. Circulation, 137: 1391–1406.10.1161/CIRCULATIONAHA.117.029617587573429581366
  30. 30. Niizeki K., Saitoh T. (2014) Cardio-locomotor phase synchronization during rhythmic exercise. J. Phys. Fit. Sports Med., 3(1); 11-20.10.7600/jpfsm.3.11
  31. 31. Noa R.B., Michal K., (2014) The Association between Cardiac Autonomic Control System and Motor Performance among Patients Post Stroke: Review of the Literature. Int. J. Neurorehabilitation, 1: 136.
  32. 32. Nomura K., Takei Y., Yanagida Y., (2003) Comparison of cardio-locomotor synchronization during running and cycling. Eur. J. Appl. Physiol., 89: 221-229.10.1007/s00421-002-0784-0
  33. 33. Parker R., Higgins Z., Mlombile Z., Mohr M.J., Wagner T.L. (2018) The effects of warm water immersion on blood pressure, heart rate and heart rate variability in people with chronic fatigue syndrome. S. Afr. J. Physi-other., 74(1): 442.10.4102/sajp.v74i1.442613169930214947
  34. 34. Pettit N.N., MacKenzie E.L., Ridgway J.P., Pursell K., Ash D., Patel B., Pho M.T. (2020) Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. Obesity, 28: 1806–1810.10.1002/oby.22941736213532589784
  35. 35. Plews D.J., Scott B., Altini M., Wood M., Kilding A.E., Laursen P.B. (2017) Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform., 12(10): 1324–1328.10.1123/ijspp.2016-066828290720
  36. 36. Poirier P., Martin J., Marceau P., Biron S., Marceau S. (2004) Impact of bariatric surgery on cardiac structure, function and clinical manifestations in morbid obesity. Expert Rev. Cardiovasc. Ther., 2(2): 193–201.10.1586/14779072.2.2.19315151468
  37. 37. Rouffet D., Taylor S., Sparrow W., Begg R., (2008) Cardio-locomotor entrainment during walking in young healthy people. A preliminary study, International Conference on Intelligent Sensors, Sensor Networks and Information Processing 347–350.10.1109/ISSNIP.2008.4762012
  38. 38. Shaffer F., Ginsberg J.P. (2017) An overview of heart rate variability metrics and norms. Front. Public Health, 5: 258.10.3389/fpubh.2017.00258
  39. 39. Schitter A.M., Fleckenstein J., Frei P., Taeymans J., Kurpiers N., Radlinger L. (2020) Applications, indications, and effects of passive hydrotherapy WATSU (WaterShiatsu) – A systematic review and meta-analysis. PLoS ONE 15(3): e0229705.10.1371/journal.pone.0229705706961632168328
  40. 40. Spampinato D.A., Celnik P.A., Rothwell J.C. (2020) Cerebellar-Motor Cortex Connectivity: One or Two Different Networks? J. Neurosci., 40(21): 4230–4239.10.1523/JNEUROSCI.2397-19.2020724420032312885
  41. 41. Takeuchi S., Nishida Y., Mizushima T. (2015) Evidence of an association between cardiac-locomotor synchronization and lower leg muscle blood perfusion during walking. J. Phys. Ther. Sci., 27(6): 1819–1822.10.1589/jpts.27.1819449999126180328
  42. 42. Tartof S.Y., Qian L., Hong V., Wei R., Nadjafi R.F., Fischer H., Li Z., Shaw S.F., Caparosa S.L., Nau C.L., Saxena T., Rieg G.K., Ackerson B.K., Sharp A.L., Skarbinski J., Naik T.K., Murali S.B. (2020) Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Ann. Intern. Med., 0003-4819, M20-3742. Advance online publication.10.7326/M20-3742742999832783686
  43. 43. Tufekcioglu E., Cotuk H.B. (2009) Comparison of heart rate variability in different body position on land and in water. Nigde University J. Phys. Educ. Sports Sci., 3(3): 152-159.
  44. 44. Tufekcioglu E., Erzeybek M.S., Kaya F., Ozan G. (2018) The Effect of 12-Week Passive Aquatic Bodywork on Sympathovagal Balance of Obese Youth. J. Educ. Train. Stud., 6(2): 166.10.11114/jets.v6i2.2963
  45. 45. Virtanen R., Jula A., Kuusela T., Helenius H., Voipio-Pulkki. (2003) Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J. Hum. Hypertens., 17: 171–179.10.1038/sj.jhh.100152912624607
  46. 46. Windham B.G., Fumagalli S., Ble A., Sollers J.J., Thayer J.F., Najjar S.S., Griswold M.E., Ferrucci L. (2012) The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity. J. Obes., 2012: 149516. DOI: 10.1155/2012/149516.10.1155/2012/149516335755622649714
  47. 47. www.worldobesity.org/about/about-obesity/prevalence-of-obesity
Language: English
Page range: 20 - 28
Submitted on: Aug 8, 2020
Accepted on: Nov 24, 2020
Published on: Jan 27, 2021
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Ertan Tufekcioglu, Ferman Konukman, Samer Arafat, Abdul-Majeed Almalty, Abdussalam Kanniyan, Bijen Filiz, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.