Have a personal or library account? Click to login

Finite element analysis to assess the biomechanical behavior of a finger model gripping handles with different diameters

Open Access
|Apr 2019

References

  1. 1. Adams S.K., Peterson P.J. (1990) Maximumvoluntary hand grip torque for circular electrical connectors. Appl. Ergon., 21: 78–79.10.1016/0003-6870(90)90094-E
  2. 2. Agache P.G., Monneur C., Leveque J.L., De Rigal J. (1989) Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res., 269: 32–221.10.1007/BF00406415
  3. 3. Alphin M.S., Sankaranarayanasamy K., Sivapirakasam S.P. (2013) Experimental investigation to study the influence of handle diameter on low-frequency, hand–arm vertical vibration. Hum. Factors. Ergon. Manuf., 23: 140–148.10.1002/hfm.20306
  4. 4. Athanasiou K.A., Rosenwasser M.P., Buckwalter J.A., Malinin T.I., Mow V.C. (1991) Inter-species comparisons in in situ intrinsic mechanical properties of distal cartilage. J. Orthop. Res., 9: 330–340.10.1002/jor.1100090304
  5. 5. Baran R. (2004) Nail anatomy and physiology. In: Agache P., Humbert P. (eds.) Measuring the skin’, Berlin, Heidelberg: Springer-Verlag, pp. 3–290.10.1007/978-3-662-08585-1_28
  6. 6. Bjoring G., Johansson L., Hagg G. (1999) Choice of handle characteristics for pistol grip power tools. Int. J. Ergon., 24: 647–656.10.1016/S0169-8141(98)00069-9
  7. 7. Bovenzi M. (1988) Vibration white finger, digital blood pressure, and some biochemical findings on workers operating vibrating tools in the engine manufacturing industry. Am. J. Ind. Med., 14: 575–584.10.1002/ajim.4700140508
  8. 8. Brook N., Mizrahi J., Shoham M., Dayan J. (1995) A biomechanical model of index finger dynamics. Med. Eng. Phys., 17: 54–63.10.1016/1350-4533(95)90378-O
  9. 9. Daly C.H. (1982) Biomechanical properties of dermis’, J. Investig. Dermatol., 79: 17–20.10.1038/jid.1982.4
  10. 10. Ekenvall L., Lindblad L.E. (1986) Vibration white finger and digital systolic pressure during cooling. Br. J. Ind. Med., 43: 280–283.10.1136/oem.43.4.280
  11. 11. Eksioglu M. (2004) Relative optimum grip span as a function of hand anthropometry. Int. J. Ind. Ergonom., 34: 1–12.10.1016/j.ergon.2004.01.007
  12. 12. Fransson C., Winkel J. (1991) Hand strength: the influence of grip span and grip type. Ergon., 34: 881–892.10.1080/00140139108964832
  13. 13. Freund J., Toivonen R., Takala E.P. (2002) Grip forces of the fingertips. Clin. Biomech. (Bristol, Avon.), 17: 515–520.10.1016/S0268-0033(02)00043-8
  14. 14. Grant K.A., Habes D.J., Stewart L.L. (1992) An analysis of handle designs for reducing manual the influence of grip diameter. Int. J. Ind. Ergon., 10: 199–206.10.1016/0169-8141(92)90033-V
  15. 15. Harih G., Dolšak B. (2014) Recommendations for tool-handle material choice based on finite element analysis. Appl. Ergon., 45: 577–585.10.1016/j.apergo.2013.07.014
  16. 16. Imrhan S.N., Farahmand K. (1999) Male torque strength in simulated oil rig tasks: the effects of grease-smeared gloves and handle length, diameter and orientation. Appl. Ergon., 30: 455–462.10.1016/S0003-6870(98)00054-4
  17. 17. Imrhan S.N., Sundararajan K. (1992) An investigation of finger pull strengths. Ergon., 35: 289–299.10.1080/00140139208967814
  18. 18. Jain A.R. Tony B., Alphin M.S. (2018) Assessment of ergonomically designed handle shapes for low-frequency vibration responses. Proc. Inst. Mech. Eng. Pt. L, J. Mater. Des. Appl., DOI: 10.1177/1464420718766961. Finger model gripping various diameter handles 79 10.1177/1464420718766961
  19. 19. Jenmalm P., Goodwin A.W., Johansson R.S. (1998) Control of grasp stability when humans lift objects with different surface curvatures. J. Neurophysiol., 79: 1643–1652.10.1152/jn.1998.79.4.1643
  20. 20. Kong Y.K., Freivalds A. (2003) Evaluation of meat – hook handle shapes. Int. J. Ind. Ergon., 32: 13-23.10.1016/S0169-8141(03)00022-2
  21. 21. Kong Y.K., Lowe B.D., Lee S.J., Krieg E.F. (2008) Evaluation of handle shapes for screw driving. Appl. Ergon. 39: 191–8.10.1016/j.apergo.2007.05.003
  22. 22. Marras W.S., Cutlip R.G., Burt S.E., Waters T.R. (2009) National occupational research agenda (nora) future directions in occupational musculoskeletal disorder health research. Appl. Ergon., 40: 15–22.10.1016/j.apergo.2008.01.018
  23. 23. Marvik R., Nesbakken R., Lango T., Yavuz Y., Vanhauwaert Bjelland H., OttermoM.V., Stavdahl O. (2006) Ergonomic design criteria for anovel laparoscopic tool handle with tactile feedback. Minerva. Chir., 61: 435–44.
  24. 24. Nerem R. (1977)Vibration enhancement of blood-arterial finger wall macromolecule transport. In International Hand-Arm Vibration Conference, Cincinnati, USA, pp. 37–41.
  25. 25. Pheasant S., O’Neill D. (1975) Performance in gripping and turning – astudy in hand/handle effectiveness. Appl. Ergon., 6: 205–208.10.1016/0003-6870(75)90111-8
  26. 26. Sancho-Bru J.L., Perez-Gonzalez A., Vergara-MonederoM., Giurintano D. (2001) A3-D dynamic model of human finger for studying free movements. J. Biomech., 34: 1491–1500.10.1016/S0021-9290(01)00106-3
  27. 27. Savescu A.V., Latash M.L., Zatsiorsky V.M. (2008) A technique to determine friction at the fingertips. J. Appl. Biomech., 24(1): 43–50.10.1123/jab.24.1.43282718018309182
  28. 28. Schulter-Ellis F.P., Lazar G.T. (1984) Internal morphology of human phalanges. J. Hand. Surg., 9: 5–490.10.1016/S0363-5023(84)80099-4
  29. 29. Seo N.J., Armstrong T.J., Chaffin D.B., Ashton-Miller J.A. (2008) The effect of handle friction and inward or outward torque on maximum axial push force. Hum. Factors., 50: 227–236.10.1518/001872008X250692
  30. 30. Seo N.J., Armstrong T.J., Ashton-Miller J.A., Chaffin D.B. (2008) Wrist strength is dependent on simultaneous power grip intensity. Ergon., 51: 1594–1605.10.1080/00140130802216925
  31. 31. Valero-Cuevas F.J., Zajac F.E., Burgar C.G. (1998) Large index-fingertip forces are pro-duced by subject-independent patterns of muscle excitation. J. Biomech., 31: 693–703.10.1016/S0021-9290(98)00082-7
  32. 32. Wu J.Z., Cutlip R.G., Welcome D., Dong R.G. (2006) Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. Bio Med. Mater. Eng., 16: 53–66.
  33. 33. Wu J.Z., Dong R.G., Christopher M.W., Welcome D.E., Thomas W.M. (2014) Analysis of the effects of surface stiffness on the contact interaction between afinger and acylindrical handle using a three-dimensional hybrid model. Med. Eng. Phys., 36: 831–841.10.1016/j.medengphy.2014.03.007
  34. 34. Wu J.Z., Dong R.G., Rakheja S., Schopper A.W. (2002). Simulation of mechanical responses of fingertip to dynamic loading. Med. Eng. Phys., 24: 253–264.10.1016/S1350-4533(02)00018-8
  35. 35. Wu J.Z., Krajnak K., Welcome D.E., Dong R.G. (2006). Analysis of the dynamic strains in a fingertip exposed to vibrations: correlation to the mechanical stimuli on mechanoreceptors. J. Biomech., 39: 2445–2456.10.1016/j.jbiomech.2005.07.027
  36. 36. Wu J.Z., Welcome D.E., Dong R.G. (2006) Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions. Comput. Methods Biomech. Biomed. Eng., 9: 55–63.10.1080/10255840600603641
  37. 37. Wu J.Z., Welcome D.E., Krajnak K., Dong R.G. (2007) Finite element analysis of the penetrations of shear and normal vibrations into the soft tissues in a fingertip. Med. Eng. Phys., 29:718–727.10.1016/j.medengphy.2006.07.005
  38. 38. Yamada H. (1970) Strength of biological materials’, Baltimore: Williams and Wilkins Co.
Language: English
Page range: 69 - 79
Submitted on: Sep 27, 2018
Accepted on: Apr 2, 2019
Published on: Apr 12, 2019
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Benedict Jain A.R. Tony, Masilamany S. Alphin, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.