Have a personal or library account? Click to login

Predicting oxygen uptake responses during cycling at varied intensities using an artificial neural network

Open Access
|Mar 2019

References

  1. 1. Abraham A. (2005) Handbook of Measuring System Design: Artificial Neural Networks. Edited by P. H. Sydenham and Richard Thorn. Chichester, England: Wiley.10.1002/0471497398.mm421
  2. 2. Akalan C., Robergs R., Kravitz L. (2008) Prediction of VO2max from an Individualized Submaximal Cycle Ergometer Protocol. J. Exerc. Physiol. Online, 11(2): 1–17.
  3. 3. Akay F., Abut F. (2015) Machine Learning and Statistical Methods for the Prediction of Maximal Oxygen Uptake: Recent Advances. Medical Devices: Evidence and Research. DOI: 10.2147/MDER.S57281.10.2147/MDER.S57281455629826346869
  4. 4. Akay F., Inan C., Bradshaw I.D., George J.D. (2009) Support Vector Regression and Multilayer Feed Forward Neural Networks for Non-Exercise Prediction of VO2max. Expert Syst. Appl., 36(6): 10112–10119. DOI: 10.1016/j.eswa.2009.01.009.10.1016/j.eswa.2009.01.009
  5. 5. Al-Mallah, Mouaz H., Elshawi R., Ahmed A.M., Qureshi W.T., Brawner C.A., Blaha M.J., Ahmed H.M., Ehrman J.K., Keteyian S.J., Sakr S. (2017) Using Machine Learning to Define the Association between Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Am. J. Card., 120(11): 2078–2084. DOI: 10.1016/j.amjcard.2017.08.029.10.1016/j.amjcard.2017.08.02928951020
  6. 6. American College of Sports Medicine, and Pescatello L.S. (2014) ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
  7. 7. Astrand I. (1967) Aerobic Work Capacity: Its Relation to Age, Sex and Other Factors. Circulation Res., 211–217.
  8. 8. Basset D. Howley E. (2000) Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc., 32 (1): 70–84.10.1097/00005768-200001000-0001210647532
  9. 9. Beltrame T., Amelard R., Wong A., Hughson R.L. (2017) Prediction of Oxygen Uptake Dynamics by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living. Sci. Rep., 7 (April): 45738. DOI: 10.1038/srep45738.10.1038/srep45738538111828378815
  10. 10. Beltrame T., Amelard R., Villar R., Shafiee M.J., WongA., Hughson R.L. (2016) Estimating Oxygen Uptake and Energy Expenditure during Treadmill Walking by Neural Network Analysis of Easy-to-Obtain Inputs. J. Appl. Physiol., 121(5): 1226–1233. DOI: 10.1152/japplphysiol.00600.2016.10.1152/japplphysiol.00600.201627687561
  11. 11. Beltrame T., Amelard R., Wong A., Hughson R.L. (2018) Extracting Aerobic System Dynamics during Unsupervised Activities of Daily Living Using Wearable Sensor Machine Learning Models. J. Appl. Physiol., 124(2): 473–481. DOI: 10.1152/japplphysiol.00299.2017.10.1152/japplphysiol.00299.2017586736728596271
  12. 12. Blair S.N., Kampert J.B., Kohl H.W., Barlow C.E., Macera C.A., Paffenbarger R.S., Gibbons L.W. (1996) Influences of Cardiorespiratory Fitness and Other Precursors on Cardiovascular Disease and All-Cause Mortality in Men and Women. JAMA, 276(3): 205–210.10.1001/jama.1996.03540030039029
  13. 13. Capostagno B., Lambert M.I., Lamberts R.P. (2016) A Systematic Review of Submaximal Cycle Tests to Predict, Monitor, and Optimize Cycling Performance. Int. J. Sports Physiol. Perf., 11(6): 707–714. DOI: 10.1123/ijspp.2016-0174.10.1123/ijspp.2016-017427701968
  14. 14. Chilibeck P.D., Paterson D.H., Petrella R.J., Cunningham D.A. (1996) The Influence of Age and Cardiorespiratory Fitness on Kinetics of Oxygen Uptake. Can. J. Appl. Physiol., 21(3): 185–196.10.1139/h96-015
  15. 15. Crouter S.E., Clowers K.G., Bassett D. (2006) A Novel Method for Using Accelerometer Data to Predict Energy Expenditure. J. Appl. Physiol., 100(4): 1324–1331. DOI: 10.1152/japplphysiol.00818.2005.10.1152/japplphysiol.00818.2005
  16. 16. Ekelund L.G., Haskell W.L., Johnson J.L., Whaley F.S., Criqui M.H., Sheps D.S., (1988) Physical Fitness as a Predictor of Cardiovascular Mortality in Asymptomatic North American Men. N. Engl. J. Med., 319(21): 1379–1384. DOI: 10.1056/NEJM198811243192104.10.1056/NEJM198811243192104
  17. 17. Erikssen G., Liestøl K., Bjørnholt J., Thaulow E., Sandvik L., Erikssen J. (1998) Changes in Physical Fitness and Changes in Mortality. Lancet, 352(9130): 759–762.10.1016/S0140-6736(98)02268-5
  18. 18. Faul F., Erdfelder E, Lang A.G., Buchner A. (2007) G*Power 3: AFlexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods, 39(2): 175–191.10.3758/BF0319314617695343
  19. 19. García-Massó X., Serra-Añó P., García-Raffi L., Sánchez-Pérez E., Giner-Pascual M., González L.M. (2014) Neural Network for Estimating Energy Expenditure in Paraplegics from Heart Rate. Int. J. Sports Med., 35(12): 1037–1043. DOI: 10.1055/s-0034-1368722.10.1055/s-0034-136872224886923
  20. 20. Gavin H.P. (2017) The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems. Department of Civil and Environmental Engineering, Duke University.
  21. 21. Guazzi M., Adams V., Conraads V., Halle M., Mezzani A., Vanhees L., Arena R., Fletcher G.F., Forman D.E., Kitzman D.W., Lavie C.J., Myers J. (2012) Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation, 126 (18): 2261–2274. DOI: 10.1161/CIR.0b013e31826fb946.10.1161/CIR.0b013e31826fb946477732522952317
  22. 22. Gulati M., Black H.R., Shaw L.J., Arnsdorf M.F., Bairey Merz C.N., Lauer M.S., Marwick T.H., Pandey D.K., Wicklund R.H., Thisted R.A. (2005) The Prognostic Value of aNomogram for Exercise Capacity in Women. N. Engl. J. Med., 353(5): 468–75. DOI: 10.1056/NEJMoa044154.10.1056/NEJMoa04415416079370
  23. 23. Hills A.P., Byrne N.M., Ramage A.J. (1998) Submaximal Markers of Exercise Intensity. J. Sports Sci., 16(sup1): 71–76. DOI: 10.1080/026404198366696.10.1080/02640419836669622587719
  24. 24. Howley E., Bassett D., Welch H. (1995) Criteria for Maximal Oxygen Uptake: AReview and Commentary. Med. Sci. Sports Exerc., 27(9): 1292–1301.10.1249/00005768-199509000-00009
  25. 25. Jamnick N.A., By S., Pettitt C.D., Pettitt R.W. (2016) Comparison of the YMCA and aCustom Submaximal Exercise Test for Determining VO2max. Med. Sci. Sports Exerc., 48(2): 254–259. DOI: 10.1249/MSS.0000000000000763.10.1249/MSS.000000000000076326339726
  26. 26. Katch V., Weltman A, Sady S., Freedson P. (1978) Validity of the Relative Percent Concept for Equating Training Intensity. Eur. J. Appl. Physiol. Occup. Physiol., 39(4): 219–227.10.1007/BF00421445
  27. 27. Kemps H.M.C., Schep G., Hoogsteen J., Thijssen E.J.M., De Vries W.R., Zonderland M.L., Doevendans P. (2009) Oxygen Uptake Kinetics in Chronic Heart Failure: Clinical and Physiological Aspects. Neth. Heart J., 17(6): 238–244.10.1007/BF03086254
  28. 28. Lin C.W., Yang Y.T.C., Wang J.S., Yang Y.C. (2012) AWearable Sensor Module with aNeural-Network-Based Activity Classification Algorithm for Daily Energy Expenditure Estimation. IEEE Trans. Inf. Tech. Biomed., 16(5): 991–998. DOI: 10.1109/TITB.2012.2206602.10.1109/TITB.2012.2206602
  29. 29. Liu Y., Starzyk J.A., Zhu Z. (2007) Optimizing Number of Hidden Neurons in Neural Networks. Artif. Intell. Appl., 138–143.
  30. 30. Mann B.P., Khasawneh F.A., Fales R. (2011) Using Information to Generate Derivative Coordinates from Noisy Time Series. Commun. Nonlinear Sci. Numer. Simul., 16(8): 2999–3004. DOI: 10.1016/j.cnsns.2010.11.011.10.1016/j.cnsns.2010.11.011
  31. 31. Mazzoleni M.J., Battaglini C.L., Martin K.J., Coffman E.M., Ekaidat J.A., Wood W.A., Mann B.P. (2017) A Dynamical Systems Approach for the Submaximal Prediction of Maximum Heart Rate and Maximal Oxygen Uptake. Sports Eng., 21(1): 31–41. DOI: 10.1007/s12283-017-0242-1.10.1007/s12283-017-0242-1
  32. 32. Mazzoleni M.J., Battaglini C.L., Martin K.J., Coffman E.M., Wood W.A., Mann B.P. (2016) Modeling and Predicting Heart Rate Dynamics across a Broad Range of Transient Exercise Intensities during Cycling. Sports Eng., 19(2): 117–127. DOI: 10.1007/s12283-015-0193-3.10.1007/s12283-015-0193-3
  33. 33. Morris M., Lamb K., Cotterrell D., Buckley J. (2009) Predicting Maximal Oxygen Uptake via a Perceptually Regulated Exercise Test (PRET) J. Exerc. Sci. Fit., 7 (2): 122–128.10.1016/S1728-869X(09)60015-0
  34. 34. Myers J., Prakash M., Froelicher V., Do D., Partington S., Atwood J.A. (2002) Exercise Capacity and Mortality among Men Referred for Exercise Testing. N. Engl. J. Med., 346 (11): 793–801. DOI: 10.1056/NEJMoa011858.10.1056/NEJMoa01185811893790
  35. 35. Nevill A.M., Cooke C. B. (2017) The Dangers of Estimating VO2max Using Linear, Nonexercise Prediction Models. Med. Sci. Sports Exerc., 49(5): 1036-1042. DOI: 10.1249/MSS.0000000000001178.10.1249/MSS.000000000000117827922463
  36. 36. Plasqui G. Westerterp K.R. (2005) Accelerometry and Heart Rate as aMeasure of Physical Fitness: Proof of Concept: Med. Sci. Sports Exerc., 37(5): 872–76. DOI: 10.1249/01.MSS.0000161805.61893.C0.10.1249/01.MSS.0000161805.61893.C015870644
  37. 37. Poole D.C., Jones A.M. (2012) Oxygen Uptake Kinetics. In Compr. Physiol., edited by Ronald Terjung. Hoboken, NJ, USA: John Wiley & Sons, Inc. DOI: wiley.com/10.1002/cphy.c100072.
  38. 38. Robergs R.A., Landwehr R. (2002) The Surprising History of the ‘HRmax= 220-Age’ equation. J. Exerc. Physiol. Online, 5(2): 1–10.
  39. 39. Ross R., Blair S.N., Arena R., Church R.S., Després J.P., Franklin B.A., Haskell W.L. (2016) Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: ACase for Fitness as aClinical Vital Sign: AScientific Statement from the American Heart Association. Circulation, CIR–0000000000000461.10.1161/CIR.000000000000046127881567
  40. 40. Rothney M.P., Neumann M., Béziat A., Chen K.Y. (2007) An Artificial Neural Network Model of Energy Expenditure Using Nonintegrated Acceleration Signals. J. Appl. Physiol., 103(4): 1419–1427. DOI: 10.1152/japplphysiol.00429.2007.10.1152/japplphysiol.00429.200717641221
  41. 41. Ruch N., Joss F., Jimmy G., Melzer K., Hänggi J., Mäder U. (2013) Neural Network versus Activity-Specific Prediction Equations for Energy Expenditure Estimation in Children. J. Appl. Physiol., 115(9): 1229–1236. DOI: 10.1152/japplphysiol.01443.2012.10.1152/japplphysiol.01443.201223990244
  42. 42. Sandvik L., Erikssen J., Thaulow E., Erikssen G., Mundal R., Rodahl K. (1993) Physical Fitness as a Predictor of Mortality among Healthy, Middle-Aged Norwegian Men. N. Engl. J. Med., 328(8): 533–537. DOI: 10.1056/NEJM199302253280803.10.1056/NEJM1993022532808038426620
  43. 43. Snell P.G., Stray-Gundersen J., Levine B.D., Hawkins M.N., Raven P.B. (2007) Maximal Oxygen Uptake as aParametric Measure of Cardiorespiratory Capacity. Med. Sci. Sports Exerc., 39(1): 103–107. DOI: 10.1249/01.mss.0000241641.75101.64.10.1249/01.mss.0000241641.75101.6417095937
  44. 44. Soares de Araújo C.G. Duarte C.V. (2015) Maximal Heart Rate in Young Adults: AFixed 188bpm Outperforms Values Predicted by aClassical Age-Based Equation. Int. J. Cardiol., 184: 609–610. DOI: 10.1016/j.ijcard.2015.02.043.10.1016/j.ijcard.2015.02.04325769008
  45. 45. Staudenmayer J., Pober D., Crouter S., Bassett D., Freedson P. (2009) An Artificial Neural Network to Estimate Physical Activity Energy Expenditure and Identify Physical Activity Type from an Accelerometer. J. Appl. Physiol., 107(4): 1300–1307. DOI: 10.1152/japplphysiol.00465.2009.10.1152/japplphysiol.00465.2009276383519644028
  46. 46. Stirling J., Zakynthinaki M., Saltin B. (2005) A Model of Oxygen Uptake Kinetics in Response to Exercise: Including aMeans of Calculating Oxygen Demand/Deficit/Debt. Bull. Math. Biol., 67(5): 989–1015. DOI: 10.1016/j.bulm.2004.12.005.10.1016/j.bulm.2004.12.00515998492
  47. 47. Stirling J.R., Zakynthinaki M.S., Billat V. (2008) Modeling and Analysis of the Effect of Training on VO2 Kinetics and Anaerobic Capacity. Bull. Math. Bio., 70(5): 1348–1370. DOI: 10.1007/s11538-008-9302-9.10.1007/s11538-008-9302-918306003
  48. 48. Stringer W., Hansen J., Wasserman K. (1997) Cardiac Output Estimated Noninvasively from Oxygen Uptake during Exercise. J. Appl. Physiol., 82(3): 908-912. DOI: 10.1152/jappl.1997.82.3.908.10.1152/jappl.1997.82.3.9089074981
  49. 49. Swain D.P., Abernathy K.S., Smith C.S., Lee S.J., Bunn S.A. (1994) Target Heart Rates for the Development of Cardiorespiratory Fitness. Med. Sci. Sports. Exerc., 26(1): 112–116.10.1249/00005768-199401000-00019
  50. 50. Wright S.P., Hall Brown T.S., Collier S.R., Sandberg K. (2017) How Consumer Physical Activity Monitors Could Transform Human Physiology Research. Am. J. Physiol. Regul. Integr. Comp. Physiol., 312(3): R358–367. DOI: 10.1152/ajpregu.00349.2016.10.1152/ajpregu.00349.2016540199728052867
  51. 51. Yamaji K., Miyashita M., Shepharo R.J. (1978) Relationship between Heart Rate and Relative Oxygen Intake in Male Subjects Aged 10 to 27 Years. J. Hum. Ergol., 7 (1): 29–39.
  52. 52. Yardley M., Havik O.E., Grov I., Relbo A., Gullestad L., Nytrøen K. (2016) Peak Oxygen Uptake and Self-Reported Physical Health Are Strong Predictors of Long-Term Survival after Heart Transplantation. Clin. Transplant., 30(2): 161–169. DOI: 10.1111/ctr.12672.10.1111/ctr.1267226589579
  53. 53. Żołądź J.A., Duda K., Majerczak J. (1998) Oxygen Uptake Does Not Increase Linearly at High Power Outputs during Incremental Exercise Test in Humans. Eur. J. Appl. Physiol. Occup. Physiol., 77(5): 445–451.10.1007/s0042100503589562296
Language: English
Page range: 60 - 68
Submitted on: Sep 16, 2018
Accepted on: Mar 18, 2019
Published on: Mar 26, 2019
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Andrew Borror, Michael Mazzoleni, James Coppock, Brian C. Jensen, William A. Wood, Brian Mann, Claudio L. Battaglini, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.