References
- A. Carbonara, S. Dambone Sessa, A. L’Abbate, F. Sanniti, and R. Chiumeo, ‘‘Comparison of advanced flexible alternating current transmission system (FACTS) devices with conventional technologies for power system stability enhancement: An updated review,’’ Electronics, vol. 13, no. 21, p. 4262, Oct. 2024.
- H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, ‘‘Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems,’’ IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 997–1005, Jul. 2019.
- A. Stiger, R. A. Rivas, and M. Halonen, ‘‘Synchronous condensers contribution to inertia and short circuit current in cooperation with STATCOM,’’ in Proc. IEEE PES GTD Grand Int. Conf. Expo. Asia (GTD Asia), Mar. 2019, pp. 955–959.
- C. Szabo, ‘‘An old tool rediscovered to address new grid challenges,’’ Power Enginnering Int., Dec. 2017. [Online]. Available: https://www.powerengineeringint.com/news/an-old-tool-rediscovered-to-address-new-grid-challenges/
- SP Energy Netw. (Oct. 2019). Phoenix Internatinal Review. [Online]. Available: https://www.spenergynetworks.co.uk
- TenneT Commissions Three Grid Stabilization Systems for the German Power Grid, T&D World, Overland Park, KS, USA, 2022.
- Litgrid. (Jun. 2021). Development Plan of the Electric Power System and Transmission Grid 2021-2030. [Online]. Available: https://www.litgrid.eu/uploads/files/dir580/dir29/dir1/10_0.php
- Terna. (2023). Grid Development Plan 2023— Hypergrid Project. [Online]. Available: https://www.terna.it/en/electric-system/grid/national-electricity-transmission-grid-development-plan
- Elering. (Jun. 2023). Synchronization With Continental Europe. [Online]. Available: https://elering.ee/en/synchronization-continental-europe
- F. Palone, F. M. Gatta, A. Geri, S. Lauria, and M. Maccioni, ‘‘New synchronous condenser–flywheel systems for a decarbonized sardinian power system,’’ in Proc. IEEE Milan PowerTech, Jun. 2019, pp. 1–6.
- L. Rusalen, G. Gardan, and R. Benato, ‘‘Application to the Italian AC/DC EHV network of the paduan three-phase power flow (PFPD_3P),’’ IEEE Trans. Ind. Appl., vol. 60, no. 6, pp. 8067–8076, Nov. 2024.
- R. Benato, G. Gardan, and L. Rusalen, ‘‘A three-phase power flow algorithm for transmission networks: A hybrid phase/sequence approach,’’ IEEE Access, vol. 9, pp. 162633–162650, 2021.
- R. Benato and G. Gardan, ‘‘A novel AC/DC power flow: HVDC-LCC/VSC inclusion into the PFPD bus admittance matrix,’’ IEEE Access, vol. 10, pp. 38123–38136, 2022.
- Y. Lei, T. Li, Q. Tang, Y. Wang, C. Yuan, X. Yang, and Y. Liu, ‘‘Comparison of UPFC, SVC and STATCOM in improving commutation failure immunity of LCCHVDC systems,’’ IEEE Access, vol. 8, pp. 135298–135307, 2020.
- J. Burr, S. Finney, and C. Booth, “Comparison of different technologies for improving commutation failure immunity index for LCC HVDC in weak AC systems,” in Proc. 11th IET Int. Conf. AC DC Power Transmiss., 2015, pp. 1–7.
- L. Michi, E. M. Carlini, T. B. Scirocco, G. Bruno, R. Gnudi, C. Pisani, M. Salvetti, and D. Macalli, ‘‘The restoration field tests in sardinian network involving HVDC, synchronous condensers and hydraulic power plant,’’ in Proc. AEIT HVDC Int. Conf. (AEIT HVDC), May 2019, pp. 1–5.
- R. Benato, S. Dambone Sessa, and F. Sanniti, ‘‘Lessons learnt from modelling and simulating the bottom-up power system restoration processes,’’ Energies, vol. 15, no. 11, p. 4145, Jun. 2022.
- F. Sanniti, R. Benato, and F. Milano, ‘‘Participation of DERs to the bottom-up power system frequency restoration processes,’’ IEEE Trans. Power Syst., vol. 38, no. 3, pp. 2630–2640, May 2023.
- Analysis of Low Frequency Oscillations Observed During a Power System Restoration Test,” 2021 AEIT International Annual Conference (AEIT), Milan, Italy, 2021, pp. 1-6, doi: 10.23919/AEIT53387.2021.9626997.
- H2020 MIGRATE. (2020). The Massive Integration of Power Electronic Devices. [Online]. Available: https://www.h2020-migrate.eu/downloads.html
- F. O. Igbinovia, G. Fandi, Z. Muller, and J. Tlusty, ‘‘Reputation of the synchronous condenser technology in modern power grid,’’ in Proc. Int. Conf. Power Syst. Technol. (POWERCON), Nov. 2018, pp. 2108–2115.
- T.-H. Liu, C.-Y. Lin, J.-S. Yang, and W.-Y. Chang, ‘‘Modeling and performance of a static frequency converter starting a 300 MVA synchronous machine,’’ Electric Power Syst. Res., vol. 37, no. 1, pp. 45–53, Apr. 1996.
- P. Wang, Q. Mou, X. Liu, W. Gu, and X. Chen, ‘‘Startup control of a synchronous condenser integrated HVDC system with power electronics based static frequency converter,’’ IEEE Access, vol. 7, pp. 146914–146921, 2019.
- P. Wang, X. Liu, Q. Mou, W. Gu, and X. Zhao, ‘‘Startup control and grid integration characteristics of 300 Mvar synchronous condenser with voltage sourced converter-based SFC,’’ IEEE Access, vol. 7, pp. 176921–176934, 2019.
- Y. Sun, Z. Cao, Q. Wang, and S. Wang, ‘‘Improving grid-connection reliability and safety of synchronous condensers with start-up process optimization,’’ IEEE Access, vol. 8, pp. 153742–153755, 2020.
- F. Sanniti, D. Tedeschi, L. Rusalen and R. Benato, “DTS: A New Deterministic Approach to Derive the Optimal Synchronization Conditions of a Synchronous Condenser,” in IEEE Access, vol. 13, pp. 31936-31948, 2025, doi: 10.1109/ACCESS.2025.3542264.