References
- Bompard, E., Huang, T., Wu, Y., & Cremenescu, M. (2013). Classification and trend analysis of threats origins to the security of power systems. International Journal of Electrical Power & Energy Systems, 50, 50-64.
- Lukman, A. J. A. O., Emmanuel, A. D. E. D. O. K. U. N., Chinonso, N., Mutiu, A., James, A., & Jonathan, K. (2018). An anti-theft oil pipeline vandalism detection: embedded system development. International journal of engineering science and application, 2(2), 55-64.
- Xie, J., Stefanov, A., & Liu, C. C. (2019). Physical and cybersecurity in a smart grid environment. Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge, 85-109.
- Laninga, J., Nasr Esfahani, A., Ediriweera, G., Jacob, N., & Kordi, B. (2023). Monitoring technologies for HVDC transmission lines. Energies, 16(13), 5085.
- Ip, E., Ravet, F., Martins, H., Huang, M. F., Okamoto, T., Han, S., ... & Herraez, M. G. (2022). Using global existing fiber networks for environmental sensing. Proceedings of the IEEE, 110(11), 1853-1888.
- Conway, C., & Mondanos, M. (2015, June). An introduction to fibre optic Intelligent Distributed Acoustic Sensing (iDAS) technology for power industry applications. In 9th International Conference on Insulated Power Cables, Jicable15—Versailles Jun (pp. 21-25).
- Xie, K., Zhao, Y., Zhang, H., Zhao, Z., Lu, Z., Chai, Q., & Zhang, J. (2018, November). Practice of optical fiber sensing technologies in power transmission lines and towers. In 2018 International Conference on Power System Technology (POWERCON) (pp. 3912-3918). IEEE.
- Zhang, X., Qi, J., Liang, X., Guan, Z., Liu, Z., Zhang, C., ... & Liu, H. (2024, December). Fiber-Optic Distributed Acoustic Sensing for Smart Grid Application. In Photonics (Vol. 12, No. 1, p. 7). MDPI.
- Chai, Q., Luo, Y., Ren, J., Zhang, J., Yang, J., Yuan, L., & Peng, G. D. (2019). Review on fiber-optic sensing in health monitoring of power grids. Optical Engineering, 58(7), 072007-072007.
- Bu, T., Kou, H., Zhang, D., Feng, Z., Law, H., & Wang, B. (2025). Distributed OPGW abnormal vibration monitoring and forewarning based on LSTM. AIP Advances, 15(2).
- Canudo, J., Sevillano, P., Iranzo, A., Kwik, S., Preciado-Garbayo, J., & Subías, J. (2024). Simultaneous Structural Monitoring over Optical Ground Wire and Optical Phase Conductor via Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry. Sensors, 24(22), 7388.
- Dzansi, D. Y., Mathe, L., & Rambe, P. (2014). Cable theft and vandalism by employees of South Africa’s electricity utility companies: A theoretical explanation and research agenda.
- Prinsloo, J., & Pretorius, L. (2014). The extent and impact of copper cable theft in Gauteng, South Africa. Acta Criminologica: African Journal of Criminology & Victimology, 2014(1), 101-113.
- Nawaz, F., Kayani, U., & Aysan, A. F. (2024). Unraveling the hidden costs: how cable theft and vandalism fuel soaring energy tariffs in emerging economies. International Review of Management and Marketing, 14(6), 255-262.
- Sidebottom, A., Ashby, M., & Johnson, S. D. (2014). Copper cable theft: Revisiting the price– theft hypothesis. Journal of Research in Crime and Delinquency, 51(5), 684-700.
- Yusof, Z. M., & Sivadass, T. (2006, September). Construction management of power transmission lines-logistics and challenges. In 6th Asia-Pacific structural engineering and construction conference, Malaysia (APSEC 2006), C-60–67.
- Chen, B. (2020). Fault statistics and analysis of 220-kV and above transmission lines in a southern coastal provincial power grid of China. IEEE Open Access Journal of Power and Energy, 7, 122-129.
- Ward, D. M. (2013). The effect of weather on grid systems and the reliability of electricity supply. Climatic Change, 121(1), 103-113.
- Zhang, R., Zhong, R., Pang, Y., Yang, B., & Shu, H. (2022). Risk assessment of high voltage power lines crossing forest areas–a case study of wildfires. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 199-206.
- Boumous, S., Boumous, Z., & Djeghader, Y. (2024). The impact of lightning strike on hybrid high voltage overhead transmission line–insulated gas line. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14.
- Eissa, M. M., Masoud, M. E., & Elanwar, M. M. M. (2009). A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Transactions on Power Delivery, 25(1), 270-278.
- Phadke, A. G., & Bi, T. (2018). Phasor measurement units, WAMS, and their applications in protection and control of power systems. Journal of Modern Power Systems and Clean Energy, 6(4), 619-629.
- Biswal, C., Sahu, B. K., Mishra, M., & Rout, P. K. (2023). Real-time grid monitoring and protection: A comprehensive survey on the advantages of phasor measurement units. Energies, 16(10), 4054.
- Qin, W. Q., Ma, G. M., Hu, J., Guo, T., Wang, S., Liu, H., & Wang, Y. (2023). Distributed detection and acoustic emission waveform retrieval of cable joint partial discharge. IEEE Transactions on Power Delivery, 38(4), 2977-2980.
- Sun, Y., Lv, A., Xie, Z., & Kong, Y. (2024). Research on partial discharge detection based on distributed optical fiber acoustic sensor. Measurement Science and Technology, 35(8), 086011.
- Hyoyoung, J. (2022). Partial discharge monitoring technology based on distributed acoustic sensing. Journal of Sensor Science and Technology, 31(6), 441-447.
- Zhu, H. H., Liu, W., Wang, T., Su, J. W., & Shi, B. (2022). Distributed acoustic sensing for monitoring linear infrastructures: Current status and trends. Sensors, 22(19), 7550.
- Power Info Today. (n.d.). Fiber optic distributed acoustic technology tackles overhead power line theft. Retrieved March 12, 2025, from https://www.powerinfotoday.com/hydroelectric/fiber-optic-distributed-acoustic-technology-tackles-overhead-power-line-theft/
- Sentrisense. (n.d.). Fighting thefts in overhead power lines with smart technology. Retrieved March 12, 2025, from http://sentrisense.com/blog/fighting-thefts-in-overhead-power-lines-with-smart-technology/
- Mestayer, J., Cox, B., Wills, P., Kiyashchenko, D., Lopez, J., Costello, M., ... & Lewis, A. (2011). Field trials of distributed acoustic sensing for geophysical monitoring. In Seg technical program expanded abstracts 2011 (pp. 4253-4257). Society of Exploration Geophysicists.
- Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., ... & Li, X. (2019). Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Scientific reports, 9(1), 1328.
- Uyar, F., Onat, T., Unal, C., Kartaloglu, T., Ozbay, E., & Ozdur, I. (2019). A direct detection fiber optic distributed acoustic sensor with a mean SNR of 7.3 dB at 102.7 km. IEEE Photonics Journal, 11(6), 1-8.
- Michalska, M., Swiderski, J., & Mamajek, M. (2014). Arbitrary pulse shaping in Er-doped fiber amplifiers— Possibilities and limitations. Optics & Laser Technology, 60, 8-13.
- Ko, K. Y., Demokan, M. S., & Tam, H. Y. (1994). Transient analysis of erbium-doped fiber amplifiers. IEEE Photonics Technology Letters, 6(12), 1436-1438.
- Zhu, X., Yao, X., Sun, J., Li, W., Wang, H., & Li, Q. (2020, November). Research on lightning damage of optical fiber overhead ground wires. In 2020 4th International Conference on HVDC (HVDC) (pp. 1183-1187). IEEE.
- Lu, L., Liang, Y., Li, B., & Guo, J. (2014, October). Maintenance of the OPGW using a distributed optical fiber sensor. In 2014 International Conference on Power System Technology (pp. 1251-1256). IEEE.
- Sharma, G., Umapathy, K., & Krishnan, S. (2020). Trends in audio signal feature extraction methods. Applied Acoustics, 158, 107020.
- Alías, F., Socoró, J. C., & Sevillano, X. (2016). A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds. Applied Sciences, 6(5), 143.
- Randall, R. B., & Antoni, J. (2011). Rolling element bearing diagnostics—A tutorial. Mechanical systems and signal processing, 25(2), 485-520.
- Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on speech and audio processing, 10(5), 293-302.