Have a personal or library account? Click to login
The Solar Power Generation Forecast Methodology for Secure System Operation with Highly Distributed Power Generation Cover

The Solar Power Generation Forecast Methodology for Secure System Operation with Highly Distributed Power Generation

Open Access
|Nov 2025

References

  1. IEA, “Renewable electricity capacity growth by technology segment, main case, 2010-2030” (IEA, Paris, 2024)
  2. G. Migliavacca, M. Rossi, D. Six, M. Džamarija, S. Horsmanheimo, C. Madina, I. Kockar and J. M. Morales, “SmartNet: H2020 project analysing TSO– DSO interaction to enable ancillary services provision from distribution networks” (CIRED, 2017, vol. 2017, no. 1, pages 1998-2002)
  3. Y. C. Ölmez, İ. Elma, C. Cengiz and O. Tozlu, “Generation Forecast System for PV Plants in Turkey” (CIGRE Power Systems Conference, Ankara, 2022)
  4. Simpkins, A., “System Identification: Theory for the User, 2nd Edition” (Ljung, L.; 1999)
  5. Quaschning, V., “Understanding renewable energy systems” (Routledge, 2014)
  6. Skoplaki, E., & Palyvos, J. A., “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations” (Solar energy, 2009, volume 83(5), pages 614-624)
  7. Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E., “Comprehensive approach to modeling and simulation of photovoltaic arrays” (IEEE Transactions on power electronics, 2009, 24(5), pages 1198-1208)
  8. Mellit, A., & Kalogirou, S. A., “Artificial intelligence techniques for photovoltaic applications: A review” (Progress in energy and combustion science, 2008, 34(5), pages 574-632)
  9. Yang, X. S., “Nature-inspired metaheuristic algorithms” (Luniver press, 2010)
  10. Hocaoğlu, F. O., Gerek, Ö. N., & Kurban, M., “Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks” (Solar energy, 2008, 82(8), pages 714-726)
  11. Batzelis, E. I., & Papathanassiou, S. A., “A method for the analytical extraction of the single-diode PV model parameters” (IEEE Transactions on Sustainable Energy, 2015, 7(2), pages 504-512)
  12. Kennedy, J., & Eberhart, R., “Particle swarm optimization” (In Proceedings of ICNN’95-international conference on neural networks, November 1995, (Vol. 4, pages. 1942-1948))
  13. Abdel-Nasser, M., & Mahmoud, K., “Accurate photovoltaic power forecasting models using deep LSTM-RNN” (Neural Computing and Applications, 2019, 31(7), pages 2727-2740)
  14. Parsopoulos, K. E., & Vrahatis, M. N., “Particle swarm optimizer in noisy and continuously changing environments” (methods, 2001, 5(6), 23)
  15. Askarzadeh, A., & Rezazadeh, A., “Parameter identification for solar cell models using harmony search-based algorithms” (Solar Energy, 2012, 86(11), pages 3241-3249)
DOI: https://doi.org/10.2478/bhee-2025-0020 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Published on: Nov 27, 2025
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Yusuf Yanik, Sinan Eren, Melih Bilgen, Utku Yilmaz, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT