Have a personal or library account? Click to login
Organic Materials for Electronic and Thermoelectric Applications Cover

Organic Materials for Electronic and Thermoelectric Applications

Open Access
|Jan 2023

References

  1. [1] I. Dobryden, V. V. Korolkov, V. Lemaur, M. Waldrip, H.-I. Un, D. Simatos, L. J. Spalek, O. D. Jurchescu, Y. Olivier, P. M. Claesson, and D. Venkateshvaran, “Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor,” Nat. Commun., vol. 13, no. 1, p. 307610.1038/s41467-022-30801-x916305835654891
  2. [2] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, “Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review,” Adv. Mater., vol. 21, no. 27, pp. 2741–2761, 7 200910.1002/adma.200803541
  3. [3] A. M. Ballantyne, L. Chen, J. Dane, T. Hammant, F. M. Braun, M. Heeney, W. Duffy, I. McCulloch, D. D. C. Bradley, and J. Nelson, “The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells,” Adv. Func. Mater., vol. 18, no. 16, pp. 2373–2380, 200810.1002/adfm.200800145
  4. [4] J. Yan, E. Rezasoltani, M. Azzouzi, F. Eisner, and J. Nelson, “Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics,” Nat. Commun., vol. 12, no. 1, p. 364210.1038/s41467-021-23975-3820612734131145
  5. [5] B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polymer International, vol. 55, no. 6, pp. 572–582, 200610.1002/pi.1974
  6. [6] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, “Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene),” Nature Mater., vol. 10, no. 6, pp. 429–433, 201110.1038/nmat301221532583
  7. [7] A. Abutaha, P. Kumar, E. Yildirim, W. Shi, S.-W. Yang, G. Wu, and K. Hippalgaonkar, “Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers,” Nat. Commun., vol. 11, no. 1, p. 1737, 202010.1038/s41467-020-15399-2714209232269219
  8. [8] G. Zuo, Z. Li, O. Andersson, H. Abdalla, E. Wang, and M. Kemerink, “Molecular doping and trap filling in organic semiconductor host–guest systems,” J. Phys. Chem. C, vol. 121, no. 14, pp. 7767–7775.10.1021/acs.jpcc.7b01758
  9. [9] T. Ma, B. X. Dong, J. W. Onorato, J. Niklas, O. Poluektov, C. K. Luscombe, and S. N. Patel, “Correlating conductivity and seebeck coefficient to doping within crystalline and amorphous domains in poly(3-(methoxyethoxyethoxy)thiophene),” J. Polym. Sci., vol. 59, no. 22, pp. 2797–2808, 202110.1002/pol.20210608
  10. [10] X. Wang, V. Askarpour, J. Maassen, and M. Lundstrom, “On the calculation of Lorenz numbers for complex thermoelectric materials,” J. Appl. Phys., vol. 123, no. 5, p. 055104, 201810.1063/1.5009939
  11. [11] M. Upadhyaya, C. J. Boyle, D. Venkataraman, and Z. Aksamija, “Effects of disorder on thermoelectric properties of semiconducting polymers,” Sci. Rep., vol. 9, no. 1, p. 5820, Appl. Phys. Rev. 201910.1038/s41598-019-42265-z645661630967596
  12. [12] A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene),” Adv. Mater., vol. 27, no. 12, pp. 2101–2106, 201510.1002/adma.20140473825688732
  13. [13] L. Liu, L. Liang, L. Deng, H. Wang, and G. Chen, “Is there a constant lorentz number for organic thermoelectric materials?” Appl. Mater. Today, vol. 27, p. 10149610.1016/j.apmt.2022.101496
  14. [14] N. Mott, “Electrons in disordered structures,” Adv. Phys., vol. 16, no. 61, pp. 49–14410.1080/00018736700101265
  15. [15] C. Deibel, D. Mack, J. Gorenflot, A. Schöll, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, “Energetics of excited states in the conjugated polymer poly(3-hexylthiophene),” Phys. Rev. B, vol. 81, p. 085202, 201010.1103/PhysRevB.81.085202
  16. [16] N. Vukmirovic and L.-W. Wang, “Density of states and wave function localization in disordered conjugated polymers: A large scale computational study,” J. Phys. Chem. B, vol. 115, no. 8, pp. 1792–1797, 201110.1021/jp111452721291182
  17. [17] S. Hood, N. Zarrabi, P. Meredith, I. Kassal, and A. Armin, “Measuring energetic disorder in organic semiconductors using the photogenerated charge-separation efficiency,” The Journal of Physical Chemistry Letters, vol. 10, no. 14, pp. 3863–387010.1021/acs.jpclett.9b0130431246471
  18. [18] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, “Approaching disorder-free transport in high-mobility conjugated polymers,” Nature, vol. 515, no. 7527, pp. 384–388, Nov. 201410.1038/nature1385425383522
  19. [19] P. Gemünden, C. Poelking, K. Kremer, K. Daoulas, and D. Andrienko, “Effect of mesoscale ordering on the density of states of polymeric semiconductors,” Macromolecular Rapid Communications, vol. 36, no. 11, pp. 1047–1053, 201510.1002/marc.20140072525757441
  20. [20] V. Lemaur, J. Cornil, R. Lazzaroni, H. Sirringhaus, D. Beljonne, and Y. Olivier, “Resilience to conformational fluctuations controls energetic disorder in conjugated polymer materials: Insights from atomistic simulations,” vol. 31, no. 17, pp. 6889–689910.1021/acs.chemmater.9b01286
  21. [21] A.-R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, “ε-branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities,” Adv. Func. Mater., vol. 25, no. 2, pp. 247–254, 201510.1002/adfm.201403020
  22. [22] Y.-W. Huang, Y.-C. Lin, H.-C. Yen, C.-K. Chen, W.-Y. Lee, W.-C. Chen, and C.-C. Chueh, “High mobility preservation of near amorphous conjugated polymers in the stretched states enabled by biaxially-extended conjugated side-chain design,” vol. 32, no. 17, pp. 7370–738210.1021/acs.chemmater.0c02258
  23. [23] A. Abtahi, S. Johnson, S. M. Park, X. Luo, Z. Liang, J. Mei, and K. R. Graham, “Designing π-conjugated polymer blends with improved thermoelectric power factors,” J. Mater. Chem. A, vol. 7, pp. 19774–1978510.1039/C9TA07464C
  24. [24] N. Vukmirovic and L.-W. Wang, “Charge carrier motion in disordered conjugated polymers: A multiscale ab initio study,” Nano Lett., vol. 9, no. 12, pp. 3996–4000, 200910.1021/nl902153919908900
  25. [25] A. Karki, G.-J. A. H. Wetzelaer, G. N. M. Reddy, V. Nádaždy, M. Seifrid, F. Schauer, G. C. Bazan, B. F. Chmelka, P. W. M. Blom, and T.-Q. Nguyen, “Unifying energetic disorder from charge transport and band bending in organic semiconductors,” Adv. Func. Mater., vol. 29, no. 20, p. 1901109, 201910.1002/adfm.201901109
  26. [26] V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B, vol. 71, p. 045214, 200510.1103/PhysRevB.71.045214
  27. [27] G. Zuo, H. Abdalla, and M. Kemerink, “Impact of doping on the density of states and the mobility in organic semiconductors,” Phys. Rev. B, vol. 93, p. 235203, 201610.1103/PhysRevB.93.235203
  28. [28] D. Ju, J. Kim, H. Yook, J. W. Han, and K. Cho, “Engineering counter-ion-induced disorder of a highly doped conjugated polymer for high thermoelectric performance,” Nano Energy, vol. 90, p. 10660410.1016/j.nanoen.2021.106604
  29. [29] A. Miller and E. Abrahams, “Impurity conduction at low concentrations,” Phys. Rev., vol. 120, pp. 745–755, 196010.1103/PhysRev.120.745
  30. [30] R. P. Fornari, J. Aragó, and A. Troisi, “A very general rate expression for charge hopping in semiconducting polymers,” J. Chem. Phys., vol. 142, no. 18, p. 184105, 201510.1063/1.492094525978881
  31. [31] R. A. Marcus, “Electron transfer reactions in chemistry. theory and experiment,” Rev. Mod. Phys., vol. 65, pp. 599–610, 199310.1103/RevModPhys.65.599
  32. [32] J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and X. Y. Hou, “Carrier density dependence of mobility in organic solids: A monte carlo simulation,” Phys. Rev. B, vol. 75, p. 153201, 200710.1103/PhysRevB.75.153201
  33. [33] S. Ihnatsenka, X. Crispin, and I. V. Zozoulenko, “Understanding hopping transport and thermoelectric properties of conducting polymers,” Phys. Rev. B, vol. 92, p. 035201, 201510.1103/PhysRevB.92.035201
  34. [34] L. Wang and D. Beljonne, “Charge transport in organic semiconductors: Assessment of the mean field theory in the hopping regime,” J. Chem. Phys., vol. 139, no. 6, p. 064316, 201310.1063/1.481785623947864
  35. [35] V. Ambegaokar, B. I. Halperin, and J. S. Langer, “Hopping conductivity in disordered systems,” Phys. Rev. B, vol. 4, pp. 2612–2620, 197110.1103/PhysRevB.4.2612
  36. [36] N. Vukmirovic and L.-W. Wang, “Carrier hopping in disordered semiconducting polymers: How accurate is the Miller–Abrahams model?” Áppl. Phys. Lett., vol. 97, no. 4, p. 043305, 201010.1063/1.3474618
  37. [37] H. Tanaka, K. Kanahashi, N. Takekoshi, H. Mada, H. Ito, Y. Shimoi, H. Ohta, and T. Takenobu, “Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating,” Sci. Adv., vol. 6, no. 7, 202010.1126/sciadv.aay8065702149432110735
  38. [38] S. A. Gregory, R. Hanus, A. Atassi, J. M. Rinehart, J. P. Wooding, A. K. Menon, M. D. Losego, G. J. Snyder, and S. K. Yee, “Quantifying charge carrier localization in chemically doped semiconducting polymers,” Nature Mater., vol. 20, no. 10, pp. 1414–142110.1038/s41563-021-01008-034017120
  39. [39] S. Dongmin Kang and G. Jeffrey Snyder, “Charge-transport model for conducting polymers,” Nat. Mater., vol. 16, p. 252–257, 201610.1038/nmat478427842076
  40. [40] T. Sakanoue and H. Sirringhaus, “Band-like temperature dependence of mobility in a solution-processed organic semiconductor,” Nature Mater., vol. 9, no. 9, pp. 736–740, 201010.1038/nmat282520729848
  41. [41] A. J. Mozer and N. S. Sariciftci, “Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers,” vol. 389, no. 4, pp. 438–44210.1016/j.cplett.2004.04.001
  42. [42] S. Ukai, H. Ito, K. Marumoto, and S.-i. Kuroda, “Electrical conduction of regioregular and regiorandom poly(3-hexylthiophene) doped with iodine,” Journal of the Physical Society of Japan, vol. 74, no. 12, pp. 3314–331910.1143/JPSJ.74.3314
  43. [43] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett., vol. 91, p. 216601, 200310.1103/PhysRevLett.91.21660114683323
  44. [44] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, and M. F. Toney, “Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight,” Macromolecules, vol. 38, no. 8, pp. 3312–331910.1021/ma047415f
  45. [45] D. Derewjanko, D. Scheunemann, E. Järsvall, A. I. Hofmann, C. Müller, and M. Kemerink, “Delocalization enhances conductivity at high doping concentrations,” Adv. Func. Mater., vol. 32, no. 20, p. 2112262, 202210.1002/adfm.202112262
  46. [46] I. E. Jacobs, G. D’Avino, V. Lemaur, Y. Lin, Y. Huang, C. Chen, T. F. Harrelson, W. Wood, L. J. Spalek, T. Mustafa, C. A. O’Keefe, X. Ren, D. Simatos, D. Tjhe, M. Statz, J. W. Strzalka, J.-K. Lee, I. McCulloch, S. Fratini, D. Beljonne, and H. Sirringhaus, “Structural and dynamic disorder, not ionic trapping, controls charge transport in highly doped conducting polymers,” J. Amer. Chem. Soc., vol. 144, no. 7, pp. 3005–301910.1021/jacs.1c10651887492235157800
  47. [47] P. Y. Yee, D. T. Scholes, B. J. Schwartz, and S. H. Tolbert, “Dopant-induced ordering of amorphous regions in regiorandom P3HT,” J. Phys. Chem. Lett., vol. 10, no. 17, pp. 4929–493410.1021/acs.jpclett.9b0207031382748
  48. [48] X. Jiang, Y. Harima, K. Yamashita, Y. Tada, J. Ohshita, and A. Kunai, “A transport study of poly(3-hexylthiophene) films with different regioregularities,” Synth. Met., vol. 135-136, pp. 351–35210.1016/S0379-6779(02)00541-6
  49. [49] S. T. Keene, W. Michaels, A. Melianas, T. J. Quill, E. J. Fuller, A. Giovannitti, I. McCulloch, A. A. Talin, C. J. Tassone, J. Qin, A. Troisi, and A. Salleo, “Efficient electronic tunneling governs transport in conducting polymer-insulator blends,” J. Amer. Chem. Soc., vol. 144, no. 23, pp. 10368–1037610.1021/jacs.2c02139920475935658455
  50. [50] E. Lim, A. M. Glaudell, R. Miller, and M. L. Chabinyc, “The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3-hexylthiophene),” Adv. Electron. Mater., vol. 5, no. 11, p. 1800915, 201910.1002/aelm.201800915
  51. [51] D. T. Scholes, P. Y. Yee, J. R. Lindemuth, H. Kang, J. Onorato, R. Ghosh, C. K. Luscombe, F. C. Spano, S. H. Tolbert, and B. J. Schwartz, “The effects of crystallinity on charge transport and the structure of sequentially processed f4tcnq-doped conjugated polymer films,” Adv. Func. Mater., vol. 27, no. 44, p. 1702654, 201710.1002/adfm.201702654
  52. [52] A. Fediai, F. Symalla, P. Friederich, and W. Wenzel, “Disorder compensation controls doping efficiency in organic semiconductors,” Nat. Commun., vol. 10, no. 1, p. 4547, 201910.1038/s41467-019-12526-6677989931591405
  53. [53] X. Yan, M. Xiong, X.-Y. Deng, K.-K. Liu, J.-T. Li, X.-Q. Wang, S. Zhang, N. Prine, Z. Zhang, W. Huang, Y. Wang, J.-Y. Wang, X. Gu, S. K. So, J. Zhu, and T. Lei, “Approaching disorder-tolerant semiconducting polymers,” Nat. Commun., vol. 12, no. 1, p. 572310.1038/s41467-021-26043-y848133634588457
  54. [54] T. J. Aubry, K. J. Winchell, C. Z. Salamat, V. M. Basile, J. R. Lindemuth, J. M. Stauber, J. C. Axtell, R. M. Kubena, M. D. Phan, M. J. Bird, A. M. Spokoyny, S. H. Tolbert, and B. J. Schwartz, “Tunable dopants with intrinsic counterion separation reveal the effects of electron affinity on dopant intercalation and free carrier production in sequentially doped conjugated polymer films,” Adv. Func. Mater., vol. 30, no. 28, p. 2001800, 202010.1002/adfm.202001800735724832684909
  55. [55] C. J. Boyle, M. Upadhyaya, P. Wang, L. A. Renna, M. Lu-Díaz, S. Pyo Jeong, N. Hight-Huf, L. Korugic-Karasz, M. D. Barnes, Z. Aksamija, and D. Venkataraman, “Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films,” Nat. Commun., vol. 10, no. 1, p. 282710.1038/s41467-019-10567-5661012931270313
  56. [56] M. Upadhyaya, M. Lu-Díaz, S. Samanta, M. Abdullah, K. Dusoe, K. R. Kittilstved, D. Venkataraman, and Z. Akšamija, “Raising dielectric permittivity mitigates dopant-induced disorder in conjugated polymers,” Adv. Sci., vol. 8, no. 19, p. 2101087, 202110.1002/advs.202101087849890334382366
  57. [57] M. Comin, S. Fratini, X. Blase, and G. D’Avino, “Doping-induced dielectric catastrophe prompts free-carrier release in organic semiconductors,” Adv. Mater., vol. 34, no. 2, p. 2105376, 202210.1002/adma.20210537634647372
  58. [58] I. H. Jung, C. T. Hong, U.-H. Lee, Y. H. Kang, K.-S. Jang, and S. Y. Cho, “High thermoelectric power factor of a diketopyrrolopyrrole-based low bandgap polymer via finely tuned doping engineering,” Sci. Rep., vol. 7, p. 44704, Mar. 201710.1038/srep44704535779628317929
  59. [59] Y. Zhong, V. Untilova, D. Muller, S. Guchait, C. Kiefer, L. Herrmann, N. Zimmermann, M. Brosset, T. Heiser, and M. Brinkmann, “Preferential location of dopants in the amorphous phase of oriented regioregular poly(3-hexylthiophene-2,5-diyl) films helps reach charge conductivities of 3000 s cm-1,” Adv. Func. Mater., vol. 32, no. 30, p. 2202075, 202210.1002/adfm.202202075
  60. [60] B. Nell, K. Ortstein, O. V. Boltalina, and K. Vandewal, “Influence of dopant–host energy level offset on thermoelectric properties of doped organic semiconductors,” J. Phys. Chem. C, vol. 122, no. 22, pp. 11730–11735, 201810.1021/acs.jpcc.8b03804
  61. [61] H. Li, E. Plunkett, Z. Cai, B. Qiu, T. Wei, H. Chen, S. M. Thon, D. H. Reich, L. Chen, and H. E. Katz, “Dopant-dependent increase in seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies,” Adv. Electron. Mater., vol. 5, no. 11, p. 1800618, 201910.1002/aelm.201800618
DOI: https://doi.org/10.2478/bhee-2022-0011 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Page range: 31 - 40
Submitted on: Dec 7, 2022
Accepted on: Dec 26, 2022
Published on: Jan 14, 2023
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Zlatan Akšamija, Muhamed Duhandžić, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.