Have a personal or library account? Click to login
Power System Control and Protection Models Based on Artificial Intelligence – A Tensorflow Approach Cover

Power System Control and Protection Models Based on Artificial Intelligence – A Tensorflow Approach

By: Alen Bernadić  
Open Access
|Oct 2022

References

  1. [1] J. Kelleher: Deep Learning, The MIT Press, 201910.7551/mitpress/11171.001.0001
  2. [2] M.Khaitan: A Survey of Techniques for using Neural Networks in Power Systems, https://hal.archives-ouvertes.fr/hal-01631454, 2017
  3. [3] S.Aggarwal: Artificial Neural Networks in Power Systems, Part I: General introduction to neural computing, 199710.1049/pe:19970306
  4. [4] S.Aggarwal: Artificial Neural Networks in Power Systems, Part II: Types of artificial neural networks, 199810.1049/pe:19980110
  5. [5] D. Wu, D. Kalathil, M. Begovic, K. Q. Ding and L. Xie: Deep Reinforcement Learning-Based Robust Protection in DER-Rich Distribution Grids, IEEE Open Access Journal of Power and Energy, DOI: 10.1109/ OAJPE.2022.316190410.1109/OAJPE.2022.3161904
  6. [6] H. Yang, X. Liu, D. Zhang, T. Chen, C. Li, W. Huang: Machine learning for power system protection and control,The Electricity Journal, Volume 34, Issue 1, 2021, 106881, ISSN 1040-619010.1016/j.tej.2020.106881
  7. [7] F. Aminifar, M. Abedini, T. Amraee. et al.: A review of power system protection and asset management with machine learning techniques, Energy Syst., 2021 https://doi.org/10.1007/s12667-021-00448-610.1007/s12667-021-00448-6
  8. [8] Y. Zhao, T. Li, X. Zhang, C. Zhang: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future, Renewable and Sustainable Energy Reviews, Volume 109, July 2019, pp 85-10110.1016/j.rser.2019.04.021
  9. [9] S.R. Samantaray, P.K. Dash, G. Panda: Power System Protection Using Machine Learning Technique, Computational Intelligence in Power Engineering. Studies in Computational Intelligence, vol 302. Springer, Berlin, Heidelberg, 201010.1007/978-3-642-14013-6_7
  10. [10] D. Stepanova, V. Naumov, V. Antonov: Deep Learning in Relay Protection of Digital Power Industry, 2nd International Youth Scientific and Technical Conference on Relay Protection and Automation, 2019, DOI: 10.1109/RPA47751.201910.1109/RPA47751.2019
  11. [11] T. Kizilcay: Digital System Simulation of Fault Arcs in Power Systems, ETEP, Vol. 1, No. 1, pp 55-60, 199110.1002/etep.4450010111
  12. [12] M. Michalik, W. Rebizant, M. Lukowicz, S. Lee: Wavelet Transform Approach to High Impedance Fault Detectionin MV Networks, Conference Power Tech, 2005DOI: 10.1109/PTC.2005.452481510.1109/PTC.2005.4524815
  13. [13] https://numpy.org
  14. [14] https://www.tensorflow.org/
  15. [15] https://pandas.pydata.org
  16. [16] https://www.python.org
  17. [17] D.S. Gastaldello, A.N. Souza, C. Ramos, P. Costa da Junior and M.G. Zago: Fault Location in Underground Systems Using Artificial Neural Networks and PSCAD/EMTDC, INES 2012 - IEEE 16th International Conference on Intelligent Engineering Systems, Proceedings, pp 423-42710.1109/INES.2012.6249871
  18. [18] A. Bernadić, Z. Leonowitz, Z.: Fault location in power networks with mixed feeders using the complex space-phasor and Hilbert–Huang transform, Int. Journal o of Electrical Power & Energy Systems, Volume 42, Issue 1, pp 208-219, November 201210.1016/j.ijepes.2012.04.012
DOI: https://doi.org/10.2478/bhee-2022-0004 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Page range: 27 - 33
Submitted on: Oct 10, 2021
Accepted on: Jun 20, 2022
Published on: Oct 13, 2022
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Alen Bernadić, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution 4.0 License.