Have a personal or library account? Click to login
High Voltage Circuit Breaker Vibration Signature Indices Evaluation for Condition Assessment Cover

High Voltage Circuit Breaker Vibration Signature Indices Evaluation for Condition Assessment

Open Access
|Oct 2022

References

  1. [1] L. Fasanotti, S. Cavalieri, M. Tomasini, F. Floreani and S. Ierace: Prognostics algorithms for circuit breaker application: A benchmark analysis, in International Conference on Industrial Informatics, INDIN 2014, 201410.1109/INDIN.2014.6945557
  2. [2] D. Lee, B. Lithgow and R. Morrison: New fault diagnosis of circuit breakers, IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 454-459, 200310.1109/TPWRD.2003.809615
  3. [3] Y. Zhang, Y. Jiang, Y. Chen and Y. Zhang: Fault Diagnosis of High Voltage Circuit Breaker Based on Multi-classification Relevance Vector Machine, Journal of Electrical Engineering and Technology, no. 15, pp. 413-420, 202010.1007/s42835-019-00199-6
  4. [4] A. Janssen, D. Makareinis and S. Carl-Enjar: International Surveys on Circuit-Breaker Reliability Data for Substation and System Studies, IEEE Transaction on Power Delivery, vol. 29, no. 2, pp. 808-8014, 201410.1109/TPWRD.2013.2274750
  5. [5] CIGRE Working Group 13.06: Final report ofthe second international enquiry on high voltage circuit-breaker failures and defects in service, CIGRE Tech. Brochure 83, June 1994
  6. [6] K. Obarcanin, B. Lacevic, M. Ermidoro: A High-Voltage Circuit Breaker Condition Assessment Method using the Vibration Fingerprint based on VMD-EM method, in IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 202010.1109/I2MTC43012.2020.9128669
  7. [7] A. Secic and K. Obarcanin: Power circuit breaker condition assessment based on vibration fingerprint measurement and why it can save your day, NETA World Magazine, pp. 89-95, 2017
  8. [8] Y. Zhang, Y. Shao, W. Gong, Z. Zhang, J. Wu: Research on combined diagnosis of mechanical fault vibration-sound signal of high voltage circuit breaker based on EEMD-energy entropy feature, in International Conference on Sensors and Instruments 2021, Qingdao, China, 202110.1117/12.2603060
  9. [9] L. Mingliang, W. Keqi, S. Laijun, Z. Jianfeng: A New Fault Diagnosis Method for High Voltage Circuit Breakers Based on Wavelet Packet and Radical Basis Function Neural Network, Open Cybernetics & Systemics Journal, vol. 8, pp. 410-417, 201410.2174/1874110X01408010410
  10. [10] Q. Yang, J. Ruan, Z. Zhuang, D. Huang: Fault Identification for Circuit Breakers Based on Vibration Measurements, IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 7, pp. 4154 - 4164, 201910.1109/TIM.2019.2946470
  11. [11] M. Wong, L. Jack, A. Nandi: Modified self-organising map for automated novelty detection applied to vibration signal monitoring, Mechanical Systems and Signal Processing, vol. 20, no. 3, pp. 593-610, 200610.1016/j.ymssp.2005.01.008
  12. [12] M. Landry, F. Léonard, C. Landry, R. Beauchemin, O. Turcotte, F. Brikci: An improved vibration analysis algorithm as a diagnostic tool for detecting mechanical anomalies on power circuit breakers, IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1986-1994, 200810.1109/TPWRD.2008.2002846
  13. [13] Y. Yeap, A. Ukil: Fault Detection in HVDC System Using Short Time Fourier Transform, in IEEE Power and Energy Society General Meeting (PESGM), 201610.1109/PESGM.2016.7741323
  14. [14] N. Charbkeaw, T. Suwanasri, T. Bunyagul: Mechanical Defect Detection of SF6 High Voltage Circuit Breaker Using Wavelet Based Vibration Signal Analysis, in 5th International Conference on Electrical EngineeringElectronics Computer Telecommunications and Information Technology, 200810.1109/ECTICON.2008.4600576
  15. [15] H. Nantian, F. Lihua, C. Huowei, X. Dianguo, C. Huaijin, N. Yonghui: Mechanical Fault Diagnosis of High Voltage Circuit Breakers with Unknown Fault Type Using Hybrid Classifier Based on LMD and Time Segmentation Energy Entropy, Entropy, vol. 18, no. 9, pp. 322 - 341, 201610.3390/e18090322
  16. [16] Z. Jianfeng, L. Mingliang, W. Keqi, X. Jingyan, S. Shuli: Feature extraction of HV circuit breaker based on ensemble empirical mode decomposition and correlation dimension, in Electronic Measurement & Instruments (ICEMI), 2015 12th IEEE International Conference on, 201510.1109/ICEMI.2015.7494271
  17. [17] Q. Yang, J. Ruan, Z. Zhuang, D. Huang: Chaotic Analysis and Feature Extraction of Vibration Signals from Power Circuit Breakers, IEEE Transactions on Power Delivery, vol. 35, no. 3, pp. 1124-1135, 201910.1109/TPWRD.2019.2934123
  18. [18] M. Kapetanovic, High Voltage Circuit Breakers, Sara-jevo: Faculty of Electrical Engineering Sarajevo, 2011
  19. [19] Q. Yang, J. Ruan, Z. Zhuang, D. Huang, Z. Qiu: A New Vibration Analysis Approach for Detecting Mechanical Anomalies on Power Circuit Breakers, IEEE Access, vol. 7, pp. 14070 - 14080, 201910.1109/ACCESS.2019.2893922
  20. [20] W. Caesarendra, P. Kosasih, A. Tieu, C. Moodie: Application of the largest Lyapunov exponent algorithm for feature extraction in low speed slew bearing condition monitoring, Mechanical Systems and Signal Processing, vol. 50, no. 51, pp. 116-138, 201510.1016/j.ymssp.2014.05.021
  21. [21] C. Froeschlé, E. Lega and R. Gonczi: Fast Lyapunov Indicators. Application to Asteroidal Motion, Celestial Mechanics and Dynamical Astronomy, vol. 67, no. 1, pp. 41-62, 199710.1023/A:1008276418601
  22. [22] A. Ekizos, A. Santuz, A. Schroll, A. Arampatzis: The Maximum Lyapunov Exponent During Walking and Running: Reliability Assessment of Different Marker-Sets, Front. Physiol., vol. 9, 201810.3389/fphys.2018.01101611740530197597
  23. [23] B. R. Hunt, J. A. Kennedy, T.-Y. Li, H. E. Nusse: The Theory of Chaotic Attractors, New York: Springer Science+Business Media, 200410.1007/978-0-387-21830-4
  24. [24] A. Fraser, H. Swinney:Independent coordinates for strange attractors from mutual information, Physical Review A, vol. 33, no. 2, pp. 1134-1140, 198610.1103/PhysRevA.33.11349896728
  25. [25] J. Walters-Williams, Y. Li: Estimation of mutual information: A survey, in Rough Sets and Knowledge Technology, vol. 23, Berlin, Heidelberg, Springer, pp. 389-396, 200910.1007/978-3-642-02962-2_49
  26. [26] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer: SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 200210.1613/jair.953
  27. [27] J. Taylor: Introduction to error analysis, the study of uncertainties in physical measurements, 1997.
  28. [28] J. Taylor, Introduction to error analysis, the study of uncertainties in physical measurements, University Science Books, 1997
  29. [29] P. Schober, C. Boer, L. Schwarte, “Correlation Coefficients, Anesthesia & Analgesia, vol. 126, no. 5, p. 1763–1768, 201810.1213/ANE.000000000000286429481436
DOI: https://doi.org/10.2478/bhee-2021-0010 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Page range: 82 - 88
Submitted on: May 1, 2021
Accepted on: Sep 1, 2021
Published on: Oct 17, 2022
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Kerim Obarčanin, Dženita Škulj, Bakir Lačević, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.