References
- [1] E. Schade, “Physics of high-current interruption of vacuum circuit breakers,” IEEE Trans. Plasma Sci., vol. 33, no. 5 I, pp. 1564–1575, 200510.1109/TPS.2005.856530
- [2] Z. Liu et al., “Development of high-voltage vacuum circuit breakers in China,” IEEE Trans. Plasma Sci., vol. 35, no. 4 II, pp. 856–865, 200710.1109/TPS.2007.896929
- [3] D. Konig, “The role of vacuum in circuit breaker technology,” Proc. - Int. Symp. Discharges Electr. Insul. Vacuum, ISDEIV, pp. 1–14, 2012.10.1109/DEIV.2012.6412366
- [4] H. Wang et al., “The influence from the residual magnetic field on the plasma dissipation in the post-arc phase in a vacuum interrupter,” Proc. - Int. Symp. Discharges Electr. Insul. Vacuum, ISDEIV, pp. 1–4, 201610.1109/DEIV.2016.7763935
- [5] Z. Wang et al., “Fully kinetic model of breakdown during sheath expansion after interruption of vacuum arcs,” J. Appl. Phys., vol. 120, no. 8, 201610.1063/1.4961420
- [6] Z. Wang, Y. Tian, Y. Geng, and Z. Liu, “Simulation of breakdown in Cu-Cr metal vapor after vacuum arc extinctions,” 2013 2nd Int. Conf. Electr. Power Equip. - Switch. Technol. ICEPE-ST 2013, pp. 8–11, 2013
- [7] S. Yanabu, S. Souma, T. Tamagawa, S. Yamashita, and T. Tsutsumi, “Vacuum Arc Under an Axial Magnetic Field and Its Interrupting Ability.,” Proc Inst Electr Eng, vol. 126, no. 4, pp. 313–320, 197910.1049/piee.1979.0079
- [8] D. Wang, L. Wang, Z. Wang, Y. Huang, R. Zhang, and S. Jia, “2-D particle simulation on the influence of transverse magnetic field on the plasma decay in postarc stage of vacuum circuit breakers,” IEEE Trans. Plasma Sci., vol. 48, no. 11, pp. 3975–3981, 202010.1109/TPS.2020.3028646
- [9] L. Wang, Z. Yang, J. Jiang, Y. Wang, and S. Jia, “Study of vacuum arc behaviour under anode spot and anode plume modes,” Appl. Phys. Lett., vol. 115, no. 1, 201910.1063/1.5110538
- [10] L. Sun, L. Yu, Z. Liu, J. Wang, and Y. Geng, “An opening displacement curve characteristic determined by high-current anode phenomena of a vacuum interrupter,” IEEE Trans. Power Deliv., vol. 28, no. 4, pp. 2585–2593, 201310.1109/TPWRD.2013.2264487
- [11] L. Yu, J. Wang, Y. Geng, G. Kong, and Z. Liu, “High-current vacuum arc phenomena of nanocrystalline CuCr25 contact material,” IEEE Trans. Plasma Sci., vol. 39, no. 6 PART 1, pp. 1418–1426, 2011.
- [12] X. Yao et al., “Development and Type Test of a Single-Break 126-kV/40-kA-2500-A Vacuum Circuit Breaker,” IEEE Trans. Power Deliv., vol. 31, no. 1, pp. 182–190, 201610.1109/TPWRD.2015.2456033
- [13] X. Song, Z. Shi, S. Jia, and L. Wang, “Self-magnetic field calculation in modeling the current-carrying electrode system with plasma jet and cathode spot motion in a vacuum arc,” IEEE Trans. Plasma Sci., vol. 39, no. 8, pp. 1743–1749, 201110.1109/TPS.2011.2158612
- [14] S. Jia, X. Song, Z. Shi, L. Wang, and X. Huo, “Investigations on the motion of high-current vacuum-arc cathode spots under a magnetic field,” IEEE Trans. Plasma Sci., vol. 39, no. 6 PART 1, pp. 1344–1348, 201110.1109/TPS.2011.2127492
- [15] G. Kong, Z. Liu, Y. Geng, H. Ma, and X. Xue, “Anode spot formation threshold current dependent on dynamic solid angle in vacuum subjected to axial magnetic fields,” IEEE Trans. Plasma Sci., vol. 41, no. 8, pp. 2051–2060, 201310.1109/TPS.2013.2259182
- [16] Z. Liu, G. Kong, H. Ma, Y. Geng, and J. Wang, “Estimation of critical axial magnetic field to prevent anode spots in vacuum interrupters,” IEEE Trans. Plasma Sci., vol. 42, no. 9, pp. 2277–2283, 2014.
- [17] Y. Tan et al., “Repulsion Mechanism Applied in Resistive-Type Superconducting Fault Current Limiter,” IEEE Trans. Appl. Supercond., vol. 26, no. 6, 201610.1109/TASC.2016.2544820
- [18] H. Odaka, M. Yamada, R. Sakuma, D. Cuie, E. Kane-ko, and S. Yanabu, “DC interruption characteristic of vacuum circuit breaker,” Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi), vol. 161, no. 1, pp. 17–25, 200710.1002/eej.20362
- [19] I. Shimizu, Y. Naito, I. Yamaguchi, K. Kaiho, H. Mizoguchi, and S. Yanabu, “Operation of superconducting fault current limiter using vacuum interrupter driven by electromagnetic repulsion force for commutating switch,” Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi), vol. 164, no. 1, pp. 52–61, 200810.1002/eej.20315
- [20] L. Ren et al., “Development of an electromagnetic repulsion mechanism for a 40.5kV fast vacuum circuit breaker,” ICEPE-ST 2017 - 4th Int. Conf. Electr. Power Equipment- Switch. Technol., vol. 2017-December, no. 51221005, pp. 929–933, 201710.1109/ICEPE-ST.2017.8188990
- [21] B. Zhang et al., “A Relationship between Minimum Arcing Interrupting Capability and Opening Velocity of Vacuum Interrupters in Short-Circuit Current Interruption,” IEEE Trans. Power Deliv., vol. 33, no. 6, pp. 2822–2828, 201810.1109/TPWRD.2018.2838344
- [22] P. G. Slade and M. D. Nahemow, “Initial separation of electrical contacts carrying high currents,” J. Appl. Phys., vol. 42, no. 9, pp. 3290–3297, 197110.1063/1.1660728
- [23] A. Anders. “Ion charge state distributions of vacuum arc plasmas: The origin of species,” Physical Review E, vol. 55, no. 1, pp. 969–981, 199710.1103/PhysRevE.55.969
- [24] V. F. Puchkarev and M. B. Bochkarev, “High current density spotless vacuum arc as a glow discharge,” IEEE Trans. Plasma Sci., vol. 25, no. 4, pp. 593–597, 199710.1109/27.640670