References
- [1] M. Anthony Armstrong: Basic topology, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1983, (corrected reprint of the 1979 original)10.1007/978-1-4757-1793-8
- [2] P. Bamberg, Shlomo Sternberg: A course in mathematics for students of physics. 1, Cambridge University Press, Cambridge, 1991
- [3] S. Barbarossa, S. Sardellitti: Topological signal processing over simplicial complexes, arXiv:1907.11577, 201910.1109/DSW.2018.8439885
- [4] S. Barbarossa, S. Sardellitti, E. Ceci: Learning from signals defined over simplicial complexes, 2018 IEEE Data Science Workshop (DSW), pp. 51-55, 201810.1109/DSW.2018.8439885
- [5] G. E. Bredon: Sheaf theory, second ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 199710.1007/978-1-4612-0647-7
- [6] J. Curry, R. Ghrist, M. Robinson: Euler calculus with applications to signals and sensing, Advances in applied and computational topology, Proc. Sympos. Appl. Math., vol. 70, Amer. Math. Soc., Providence, RI, pp. 75-145, 201210.1090/psapm/070/589
- [7] C. Giusti, R. Ghrist, D. S. Bassett: Two’s company, three (or more) is a simplex, Journal of Computational Neuroscience 41, no. 1, 1-14, 201610.1007/s10827-016-0608-6492761627287487
- [8] P. W. Gross. P. Robert Kotiuga: Electromagnetic theory and computation: a topological approach, Mathematical Sciences Research Institute Publications, vol. 48, Cambridge University Press, Cambridge, 200410.1017/CBO9780511756337
- [9] J. Hansen, R. Ghrist: Opinion dynamics on discourse sheaves, arXiv:2005.12798, 2020
- [10] Jakob Hansen and Robert Ghrist, Toward a spectral theory of cellular sheaves, Appl. and Comput. Topology, vol. 4, no. 3, pp. 315-358, 201910.1007/s41468-019-00038-7
- [11] A. Hatcher: Algebraic topology, Cambridge University Press, Cambridge, 2002
- [12] F. Ji, G. Kahn, W.P. Tay: Signal processing on simplicial complexes, arXiv:2004.02392, 2020
- [13] L. Kanari, Pawel Dlotko, Martina Scolamiero, Ran Levi, Julian Shillcock, Kathryn Hess, Henry Markram: A topological representation of branching neuronal morphologies, Neuroinformatics vol. 16, no. 1, pp. 3-13, 201810.1007/s12021-017-9341-1579722628975511
- [14] S. Lefschetz: Applications of algebraic topology, Springer-Verlag, New York-Heidelberg, Graphs and networks, the Picard-Lefschetz theory and Feynman integrals, Applied Mathematical Sciences, Vol. 16, 197510.1007/978-1-4684-9367-2_13
- [15] L.-H. Lim: Hodge laplacians on graphs, SIAM Review vol. 62, no. 3, 202010.1137/18M1223101
- [16] T. J. Moore, R. J. Drost, P. Basu, R. Ramanathan, A. Swami: Analyzing collaboration networks using simplicial complexes: A case study, 2012 Proceedings IEEE INFOCOM Workshops, pp. 238-243, 201210.1109/INFCOMW.2012.6193498
- [17] J. R. Munkres: Topology: a first course, Prentice-Hall, Inc., Englewood Clis, N.J., 1975.
- [18] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, P. Vandergheynst: Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 201810.1109/JPROC.2018.2820126
- [19] A. Patania, Giovanni Petri, Francesco Vaccario: The shape of collaborations, EPJ Data Science 6, vol. 6, no. 1, pp. 18, 201710.1140/epjds/s13688-017-0114-8
- [20] G. Ribeiro, J. Lima: Graph signal processing in a nutshell, Journal of Communication and Information Systems, vol. 33, no. 1, 201810.14209/jcis.2018.22
- [21] M. Robinson: Understanding networks and their behaviors using sheaf theory, 2013 IEEE Global Conference on Signal and Information Processing, pp. 911-914, 201310.1109/GlobalSIP.2013.6737040
- [22] M. Robinson: Asynchronous logic circuits and sheaf obstructions, Proceedings of the Workshop on Geometric and Topological Methods in Computer cience (GETCO), Electron. Notes Theor. Comput. Sci., Elsevier Sci. B. V., Amsterdam, vol. 283, pp. 159-177, 201210.1016/j.entcs.2012.05.010
- [23] M. Robinson: Topological signal processing, Mathematical Engineering, Springer, Heidelberg, 201410.1007/978-3-642-36104-3
- [24] M. Robinson: A sheaf-theoretic perspective on sampling, Sampling theory, a renaissance, Appl. Numer. Harmon. Anal., Birkhauser/Springer, Cham, pp. 361-399, 201510.1007/978-3-319-19749-4_10
- [25] S. Sardellitti, S. Barbarossa, P. D. Lorenzo: On the graph fourier transform for directed graphs, IEEE Journal of Selected Topics in Signal Processing 11, vol. 11, no. 6, pp. 796-811, 201710.1109/JSTSP.2017.2726979
- [26] S. Smale: On the mathematical foundations of electrical circuit theory, J. Diefferential Geometry 7 (, vol. 7, pp. 193-210, 197210.4310/jdg/1214430827
- [27] L. Stankovic, D. P. Mandic, M. Dakovic, I. Kisil, E. Sejdic, A. G. Constantinides: Understanding the basis of graph signal processing via an intuitive example-driven approach [lecture notes], IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 133-145, 201910.1109/MSP.2019.2929832
- [28] H. Weyl: Reparticion de corriente en una red conductora, Rev. Mat. Hisp. Amer., vol. 5, pp. 153-164, 1923