Have a personal or library account? Click to login
Topological Methods in Signal Processing Cover
By: Ismar Volić  
Open Access
|Nov 2022

References

  1. [1] M. Anthony Armstrong: Basic topology, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1983, (corrected reprint of the 1979 original)10.1007/978-1-4757-1793-8
  2. [2] P. Bamberg, Shlomo Sternberg: A course in mathematics for students of physics. 1, Cambridge University Press, Cambridge, 1991
  3. [3] S. Barbarossa, S. Sardellitti: Topological signal processing over simplicial complexes, arXiv:1907.11577, 201910.1109/DSW.2018.8439885
  4. [4] S. Barbarossa, S. Sardellitti, E. Ceci: Learning from signals defined over simplicial complexes, 2018 IEEE Data Science Workshop (DSW), pp. 51-55, 201810.1109/DSW.2018.8439885
  5. [5] G. E. Bredon: Sheaf theory, second ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 199710.1007/978-1-4612-0647-7
  6. [6] J. Curry, R. Ghrist, M. Robinson: Euler calculus with applications to signals and sensing, Advances in applied and computational topology, Proc. Sympos. Appl. Math., vol. 70, Amer. Math. Soc., Providence, RI, pp. 75-145, 201210.1090/psapm/070/589
  7. [7] C. Giusti, R. Ghrist, D. S. Bassett: Two’s company, three (or more) is a simplex, Journal of Computational Neuroscience 41, no. 1, 1-14, 201610.1007/s10827-016-0608-6492761627287487
  8. [8] P. W. Gross. P. Robert Kotiuga: Electromagnetic theory and computation: a topological approach, Mathematical Sciences Research Institute Publications, vol. 48, Cambridge University Press, Cambridge, 200410.1017/CBO9780511756337
  9. [9] J. Hansen, R. Ghrist: Opinion dynamics on discourse sheaves, arXiv:2005.12798, 2020
  10. [10] Jakob Hansen and Robert Ghrist, Toward a spectral theory of cellular sheaves, Appl. and Comput. Topology, vol. 4, no. 3, pp. 315-358, 201910.1007/s41468-019-00038-7
  11. [11] A. Hatcher: Algebraic topology, Cambridge University Press, Cambridge, 2002
  12. [12] F. Ji, G. Kahn, W.P. Tay: Signal processing on simplicial complexes, arXiv:2004.02392, 2020
  13. [13] L. Kanari, Pawel Dlotko, Martina Scolamiero, Ran Levi, Julian Shillcock, Kathryn Hess, Henry Markram: A topological representation of branching neuronal morphologies, Neuroinformatics vol. 16, no. 1, pp. 3-13, 201810.1007/s12021-017-9341-1579722628975511
  14. [14] S. Lefschetz: Applications of algebraic topology, Springer-Verlag, New York-Heidelberg, Graphs and networks, the Picard-Lefschetz theory and Feynman integrals, Applied Mathematical Sciences, Vol. 16, 197510.1007/978-1-4684-9367-2_13
  15. [15] L.-H. Lim: Hodge laplacians on graphs, SIAM Review vol. 62, no. 3, 202010.1137/18M1223101
  16. [16] T. J. Moore, R. J. Drost, P. Basu, R. Ramanathan, A. Swami: Analyzing collaboration networks using simplicial complexes: A case study, 2012 Proceedings IEEE INFOCOM Workshops, pp. 238-243, 201210.1109/INFCOMW.2012.6193498
  17. [17] J. R. Munkres: Topology: a first course, Prentice-Hall, Inc., Englewood Clis, N.J., 1975.
  18. [18] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, P. Vandergheynst: Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 201810.1109/JPROC.2018.2820126
  19. [19] A. Patania, Giovanni Petri, Francesco Vaccario: The shape of collaborations, EPJ Data Science 6, vol. 6, no. 1, pp. 18, 201710.1140/epjds/s13688-017-0114-8
  20. [20] G. Ribeiro, J. Lima: Graph signal processing in a nutshell, Journal of Communication and Information Systems, vol. 33, no. 1, 201810.14209/jcis.2018.22
  21. [21] M. Robinson: Understanding networks and their behaviors using sheaf theory, 2013 IEEE Global Conference on Signal and Information Processing, pp. 911-914, 201310.1109/GlobalSIP.2013.6737040
  22. [22] M. Robinson: Asynchronous logic circuits and sheaf obstructions, Proceedings of the Workshop on Geometric and Topological Methods in Computer cience (GETCO), Electron. Notes Theor. Comput. Sci., Elsevier Sci. B. V., Amsterdam, vol. 283, pp. 159-177, 201210.1016/j.entcs.2012.05.010
  23. [23] M. Robinson: Topological signal processing, Mathematical Engineering, Springer, Heidelberg, 201410.1007/978-3-642-36104-3
  24. [24] M. Robinson: A sheaf-theoretic perspective on sampling, Sampling theory, a renaissance, Appl. Numer. Harmon. Anal., Birkhauser/Springer, Cham, pp. 361-399, 201510.1007/978-3-319-19749-4_10
  25. [25] S. Sardellitti, S. Barbarossa, P. D. Lorenzo: On the graph fourier transform for directed graphs, IEEE Journal of Selected Topics in Signal Processing 11, vol. 11, no. 6, pp. 796-811, 201710.1109/JSTSP.2017.2726979
  26. [26] S. Smale: On the mathematical foundations of electrical circuit theory, J. Diefferential Geometry 7 (, vol. 7, pp. 193-210, 197210.4310/jdg/1214430827
  27. [27] L. Stankovic, D. P. Mandic, M. Dakovic, I. Kisil, E. Sejdic, A. G. Constantinides: Understanding the basis of graph signal processing via an intuitive example-driven approach [lecture notes], IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 133-145, 201910.1109/MSP.2019.2929832
  28. [28] H. Weyl: Reparticion de corriente en una red conductora, Rev. Mat. Hisp. Amer., vol. 5, pp. 153-164, 1923
DOI: https://doi.org/10.2478/bhee-2020-0002 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Page range: 14 - 25
Submitted on: May 1, 2020
Accepted on: Jun 1, 2020
Published on: Nov 1, 2022
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ismar Volić, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.