Have a personal or library account? Click to login
Feed additives strategies to control methanogenesis in ruminants, Review Cover

Feed additives strategies to control methanogenesis in ruminants, Review

Open Access
|Dec 2024

References

  1. Abd El Tawab, A. M., Kholif, A. E., Khattab, M. S. A., Shaaban, M. M., Hadhoud, F. I., Mostafa, M. M. M., and Olafadehan, O. A. (2020). Feed utilization and lactational performance of Barki sheep fed diets containing thyme or celery. Small Ruminant Research, 192:106249. https://doi.org/10.1016/j.smallrumres.2020.106249.
  2. Abd El Tawab, A. M., Murad, H. A., Khattab, M. S. A., and Azzaz, H. H. (2019). Optimizing Production of Tannase and in vitro Evaluation on Ruminal Fermentation, Degradability and Gas Production. International Journal of Dairy Science, 14: 53-60. doi: 10.3923/ijds.2019.53.60.
  3. Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., and Badr, Y. (2016). Comparison of nanoparticles effects on gas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87: 592–598. https://doi.org/10.1016/j.renene.2015.10.053.
  4. Abdeltawab, A., Kandil, A., Boraei, M., and El-Sysy, M. A. I. (2022). Impact of Exogenous Fibrolytic Enzymes Oni-Nutritional Evaluation and Productive Performance of Growing Buffalo Calves. Egyptian Journal of Nutrition and Feeds. 25 (2): 149-156. DOI: 10.21608/ejnf.2022.256701.
  5. Afdal, M., Darlis, D., and Adriani, A. (2021). Digestibility, Milk Yields, and Milk Quality of Ettawa Crossbred Goats Fed Coleus amboinicus L. Leaf Extract. Tropical Animal Science Journal, 44 (4): 441-450. https://doi.org/10.5398/tasj.2021.44.4.441.
  6. Aguilar-Marin, S. B., Betancur-Murillo, C. L., Isaza, G. A., Mesa H., and Jovel J. (2020). Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC microbiology, 20 (1): 364. https://doi.org/10.1186/s12866-020-02037-6.
  7. Al-Homidan, I., Fathi M., Abdelsalam, M., Ebeid, T., Abou-Emera, O., Mostafa, M., Abd El-Razik, M., and Shehab-El-Deen, M. (2022). Effect of propolis supplementation and breed on growth performance, immunity, blood parameters and cecal microbiota in growing rabbits. Animal Bioscience., 35 (10): 1606-1615. https://doi.org/10.5713/ab.21.0535.
  8. Ali, K., Ahmed, B., Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., and Musarrat, J. (2015). Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates. Public Library of Science one 10 (7): e0131178. https://doi.org/10.1371/journal.pone.0131178.
  9. Alvarez-Hess, P. S., Moate, P. J., Williams, S. R. O., Jacobs, J. L., Beauchemin, K.A., Hannah, M.C., Durmic, Z., and Eckard, R. J. (2019). Effect of combining wheat grain with nitrate, fat or 3-nitrooxypropanol on in vitro methane production. Animal Feed Science and Technology, 256: 114237. https://doi.org/10.1016/j.anifeedsci.2019.114237.
  10. Alves, B. M., Martins, C. M. D. M. R., Peti, A. P. F., Moraes, L. A. B. D., and Santos, M. D. (2019). In vitro evaluation of novel crude extracts produced by actinobacteria for modulation of ruminal fermentation. Revista Brasileira de Zootecnia 48: e20190066. https://doi.org/10.1590/rbz4820190066.
  11. Amin, A. B., and Mao, S. (2021). Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Animal Nutrition.7,1,31-41. https://doi.org/10.1016/j.aninu.2020.10.005.
  12. Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M., and McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96 (3): 354-363. https://doi.org/10.1139/cjas-2015-0141.
  13. Arango, J., Ruden, A., Martinez-Baron, D., Loboguerrero, A. M., Berndt, A., Chacón, M., Carlos A., Walter O., Carlos A. G., Patricia R., Juan K., Stefan B., Jon M. M., and Chirinda, N. (2020). Ambition Meets Reality: Achieving Ghg Emission Reduction Targets in the Livestock Sector of Latin America Frontiers in Sustainable Food Systems 4: 65. https://doi.org/10.3389/fsufs.2020.00065.
  14. Balamurugan R., Radhakrishnan, L., Karunakaran, R., Gnanaraj, P. T., Vijayaran, K. (2022). Effect of Shikakai Pods (Acacia concinna) on Phytochemical and Methane Mitigation Potential by in vitro Study. Asian Journal of Dairy and Food Research. 41 (4): 504-506 https://doi.org/10.18805/ajdfr.dr-1858.
  15. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979). Methanogens: reevaluation of a unique biological group. Microbiological reviews, 43 (2): 260–296. https://doi.org/10.1128/mr.43.2.260-296.1979.
  16. Battumur, U., Lee, M., Bae, G. S., and Kim, C. (2019). Isolation and characterization of a new Methanoculleus bourgensis strain KOR-2 from the rumen of Holstein steers. Asian-Australasian Journal of Animal Sciences, 32 (2): 241-248. https://doi.org/10.5713/ajas.18.0409.
  17. Bayat, A. R., Kairenius, P., Stefa nski, T., Leskinen, H., Comtet-Marre, S., Forano, E., and Shingfield, K. J. (2015). Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Journal of Dairy Science. 98: 3166–3181. https://doi.org/10.3168/jds.2014-7976.
  18. Beauchemin, K. A., and McGinn, S. M. (2006). Effects of various feed additives on the methane emissions from beef cattle. International Congress Series. 1293: 152–155. doi: 10.1016/j.ics.2006.01.042.
  19. Beauchemin, K. A., Kreuzer, M., O'Mara, F. P., and McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture 48 (2): 21-27 https://doi.org/10.1071/EA07199.
  20. Beauchemin, K. A., McGinn, S. M., Benchaar, C., and Holtshausen, L. (2009). Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science. 92: 2118–2127. https://doi.org/10.3168/jds.2008-1903.
  21. Benetel, G., Silva, T. D. S., Fagundes, G. M., Welter, K. C., Melo, F. A., Lobo, A. A. G., Muir, J. P., and Bueno, I. C. S. (2022). Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules (Basel, Switzerland), 27(7), 2227. https://doi.org/10.3390/molecules27072227.
  22. Besi, R., Svjetlana, T., Tihomir, F., Jelena, P., Siniša, O., Lorena, J., Ivica, B., Andreja, J., and Tomislav, K. (2018). Preliminary serological and molecular investigation of selected viral pathogens in Croatian cervid species. Acta Veterinaria, 68 (1): 65 - 79. https://doi.org/10.2478/acve-2018-0006.
  23. Bintsis, T. (2018). Lactic acid Bacteria as starter cultures: an update in their metabolism and genetics. AIMS Microbiology, 4 (4): 665–684. https://doi.org/10.3934/microbiol.2018.4.665.
  24. Booyens, K. E., Einkamerer, O. B., van der Merwe, H. J., Hugo, A., Slippers, S. C., and Fair, M. D. (2013). The effect of dietary lipid saturation and antioxidant source on the nutrient digestibility of lamb finishing diets. South African Journal of Animal Science. 43 (5): S22-S26. https://scite.ai/reports/10.4314/sajas.v43i5.4.
  25. Broch, A., Jena, U., Hoekman, S. K., and Langford, J. I. (2013). Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies, 7 (1): 62-79. https://doi.org/10.3390/en7010062.
  26. Brooke Charles, G., Roque Breanna, M., Shaw, C., Najafi, N., Gonzalez, M., Pfefferlen, A., De Anda, V., Ginsburg David, W., Harden Maddelyn, C., Nuzhdin Sergey, V. et al (2020). Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Frontiers in Marine Science. 7:561. doi: 10.3389/fmars.2020.00561.
  27. Brutti, D. D., Canozzi, M. E. A., Sartori, E. D., Colombatto, D., and Barcellos, J. O. J., (2023). Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Animal Feed Science and Technology, 306, 115806, 0377-8401. https://doi.org/10.1016/j.anifeedsci.2023.115806.
  28. Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., and Ferret A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of dairy science, 90(6), 2580–2595. https://doi.org/10.3168/jds.2006-644.
  29. Canbolat, O., Kalkan, H., Karaman, S., and Filya, I. (2011). The effect of essential oils on the digestibility, rumen fermentation and microbial protein production. Kafkas Universitesi Veteriner Fakultesi Dergisi. 17, 557– 565. DOI:10.9775/KVFD.2011.4006.
  30. Carulla, J. E., Kreuzer, M., Machmueller, A., and Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage -fed sheep. Australian Journal of Agricultural Research 56 (9): 961-970. https://doi.org/10.1071/AR05022.
  31. Chao, S. C., Young, D. G., and Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12: 639-649. https://doi.org/10.1080/10412905.2000.9712177.
  32. Chen, J., Wang, W., and Wang, Z. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese Journal of Animal Nutrition, 23: 1415–1421. https://api.semanticscholar.org/CorpusID:201951683.
  33. Cherdthong, A., Khonkhaeng, B., Foiklang, S., Wanapat, M., Gunun, N., Gunun, P., Chanjula, P., and Polyorach, S. (2019). Effects of Supplementation of Piper Sarmentosum Leaf Powder on Feed Efficiency, Rumen Ecology and Rumen Protozoal Concentration in Thai Native Beef Cattle. Animals, 4 (9): 130. https://doi.org/10.3390/ani9040130.
  34. Chung, Y. H., Zhou, M., Holtshausen, L., Alexander, T. W., McAllister, T. A., Guan, L. L., and Beauchemin, K. A. (2012). A fibrolytic enzyme additive for lactating Holstein cow diets: Ruminal fermentation, rumen microbial populations, and enteric methane emissions. Journal of dairy science, 95: 1419–1427. https://doi.org/10.3168/jds.2011-4552.
  35. Conaway, C. H., Walvoord, M. A., Thomas, R. B., Green, C. T., Baker, R. J., Thordsen, J. J., Stonestrom, D. A., and Andraski, B. J. (2018). Unsaturated Zone CO2, CH4, and δ 13 C-CO 2 at an Arid Region Low-Level Radioactive Waste Disposal Site," Vadose Zone Journal, 17 (1): 1-11. https://doi.org/10.2136/vzj2017.11.0200.
  36. Costa, J. B. G. Jr., Zeoula, L. M., Franco, S. L., de Moura, L. P.P., Valero, M. V., Simioni, F. L., da Paula, E. M., and Samensari, R. B. (2012). Effect of propolis product on digestibility and ruminal parameters in buffaloes consuming a forage-based diet," Italian Journal of Animal Science, 11 (4): e78. https://doi.org/10.4081/ijas.2012.e78.
  37. Crickenberger, S., and Moran, A. L. (2013). Rapid Range Shift in an Introduced Tropical Marine Invertebrate. Public Library of Science one, 8 (10): e78008. https://scite.ai/reports/10.1371/journal.pone.0078008.
  38. da Silva Zornitta, C., Ítavo, L.C.V., Ítavo, C.C.B.F., dos Santos, G.T., Dias, A.M., dos Santos Difante, G., and Gurgel, A.L.C. (2021). Kinetics of In Vitro Gas Production and Fitting Mathematical Models of Corn Silage. Fermentation, 7 (4): p. 298. https://doi.org/10.3390/fermentation7040298.
  39. Das Neves, S. C. V., da Silva, S. M. B. C., Costa, G. K. A., Correia, E. S., Santos, A. L., da Silva, L. C. R., and Bicudo, Á. J. A. (2022). Dietary Supplementation with Fumaric Acid Improves Growth Performance in Nile Tilapia Juveniles. Animals 12, 1: 8. https://doi.org/10.3390/ani12010008.
  40. Deolindo, Guilherme L., Molosse, Vitor L., Cécere, Bruno G. O., Picoli, Fernanda, Nora, Luisa, Marcon, Charles, Klein, Bruna, Bissacotti, Bianca F., Copetti, Priscila M., Silva, Luiz Eduardo L. Wagner, Roger, Kempka, Aniela P., Araujo, Denise N., and da Silva, Aleksandro S. (2024). Adding red propolis to the diet of Lacaune lambs: Effects on animal health, ruminal environment, performance, and meat quality, Small Ruminant Research, 240,107379, https://doi.org/10.1016/j.smallrumres.2024.107379.
  41. Deshpande, P.O., Mohan, V., Pore, M.P., Gumaste, S.A., and Thakurdesai, P.A. (2016). Prenatal Developmental Toxicity Evaluation of Furostanol Saponin Glycoside Based Standardized Fenugreek Seed Extract During Organogenesis Period of Pregnancy in Rats. International Journal of Pharmacy and Pharmaceutical Sciences, 8: 124-129. https://doi.org/10.22159/ijpps.2016v8i12.14942.
  42. Dohme, F., Machmüller, A., Wasserfallen, A., and Kreuzer, M. (2000). Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Canadian Journal of Animal Science, 80: 473-482. https://api.semanticscholar.org/CorpusID:85737144.
  43. Dorman, H.J.D., Deans, S.G., 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88, 308– 316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  44. Doyle, N., Mbandlwa, P., Kelly, W. J., Attwood, G., Li, Y., Ross, R. P., Stanton, C. and Leahy, S. (2019). Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Frontiers in Microbiology, 10: 2207. doi: 10.3389/fmicb.2019.02207.
  45. Ehtesham, S., Vakili, A. R., Danesh Mesgaran, M., and Bankova, V. (2018). The effects of phenolic compounds in Iranian propolis extracts on in vitro rumen fermentation, methane production and microbial population. Iranian Journal of Applied Animal Science, 8 (1): 33-41. https://ijas.rasht.iau.ir/article_538743.html.
  46. El-Zaher, H. M., Eid, S. Y., Shaaban, M. M., Ahmed-Farid, O. A., Abd El Tawab, A. M., and Khattab, M. S. A. (2020). Ovarian activity and antioxidant indices during estrous cycle of Barki ewes under effect of thyme, celery and salinomycin as feed additives, Zygote, 29: 155-60. doi:10.1017/S0967199420000611.
  47. Eugene, M. A., Massé, D. I., Chiquette, J., and Benchaar, C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian Journal of Animal Science, 88: 331-337. https://doi.org/10.4141/CJAS07112.
  48. Filho, J. M. P, Costa, R. G., Ribeiro, N. L., Guerra, R. R., Oliveira, J. S., and Beltrão, G. R. (2020). Study of morphometric and ruminal parameters in santa inês sheep fed spineless cactus (Opuntia ficus-indica, MILL). Arquivo Brasileiro De Medicina Veterinária E Zootecnia, 72 (6): 2045-2052. https://doi.org/10.1590/1678-4162-10504.
  49. Firmino, J. P., Vallejos-Vidal, E., Balebona, M.C., Ramayo-Caldas, Y., Cerezo, I.M., Salomón, R., Tort, L., Estevez, A., Moriñigo, M.Á., Reyes-López, F.E., and Gisbert, E., (2021). Diet, Immunity, and Microbiota Interactions: An Integrative Analysis of the Intestine Transcriptional Response and Microbiota Modulation in Gilthead Seabream (Sparus aurata) Fed an Essential Oils-Based Functional Diet. Frontiers in Immunology, 4 (12): 625297. doi: 10.3389/fimmu.2021.625297.
  50. Frumholtz, P., Newbold, C., and Wallace, R. (1989). Influence Of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). The Journal of Agricultural Science, 113 (2): 169-172. doi:10.1017/S002185960008672X.
  51. Fujinawa, K., Nagoya, M., Kouzuma, A., and Watanabe, K. (2019). Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells. Applied Microbiology and Biotechnology, 103: 385–6392. https://doi.org/10.1007/s00253-019-09946-1.
  52. Furtado, A. J., Abdalla Filho, A. L., Bruno, J. F., Neto, R. P., Lobo, A. A. G., da Silva, G. V., Junior, F. P., Alves, T. C., Berndt, A., de Faria Pedroso, A., de Medeiros, S. R., Oliveira, P. P. A., and Rodrigues P. H. M. (2023). Pigeon Pea Intercropped with Tropical Pasture as a Mitigation Strategy for Enteric Methane Emissions of Nellore Steers. Animals (Basel), 12;13 (8): 1323. doi: 10.3390/ani13081323.
  53. Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Pratti Daniel, J. L., Iank Bueno, A. V., and Gonçalves Ribeiro, M. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. Public Library of Science one, 13 (11): e0207127. https://doi.org/10.1371/journal.pone.0207127.
  54. Gemeda, B. S., and Hassen, A. (2015). Effect of Tannin and Species Variation on In vitro Digestibility, Gas, and Methane Production of Tropical Browse Plants. Asian-Australas Journal of Animal Science, 28 (2): 188-99. doi: 10.5713/ajas.14.0325.
  55. Gelaye, Y. (2023). Application of nanotechnology in animal nutrition: Bibliographic review. Cogent Food & Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2290308.
  56. Giuburunca, M., Criste, A. and Miresan, V. (2015). Effects of p-Coumaric Acid on Ruminal Fermetation Parameters in In Vitro Ruminal Cultures. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Animal Science and Biotechnologies, 72(1). https://doi.org/10.15835/buasvmcn-asb:10684.
  57. Glasson, C. R., Kinley, R. D., de Nys, R., King, N., Adams, S.L., Packer, M.A., and Magnusson, M. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal research, 64, 102673. doi: 10.1016/j.algal.2022.102673.
  58. Grainger, C., and Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science Technology, 166–167: 308–320. doi: 10.1016/j.anifeedsci.2011.04.021
  59. Granstad, S., Kristoffersen, A. B., Benestad, S. L., Sjurseth, S. K., David, B., Sørensen, L., Fjermedal, A., Edvardsen, D. H., Sanson, G., Løvland, A., and Kaldhusdal, M, (2020). Effect of Feed Additives as Alternatives to In-feed Antimicrobials on Production Performance and Intestinal Clostridium perfringens Counts in Broiler Chickens. Animals (Basel), 10 (2): 240. doi: 10.3390/ani10020240.
  60. Guan, H., Wittenberg, K.M., Ominski, K.H. and Krause, D.O., (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84: 1896–1906. https://doi.org/10.2527/jas.2005-652.
  61. Guo, Y. Q., Liu, J. X., Lu, Y., Zhu, W. Y., Denman, S. E., and McSweeney, C. S. (2008). Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Letters in applied microbiology, 47 (5): 421–426. https://doi.org/10.1111/j.1472-765X.2008.02459.x.
  62. Gupta, S., Mohini, M., Malla, B. A., Mondal, G., and Pandita, S. (2019). Effects of monensin feeding on performance, nutrient utilisation and enteric methane production in growing buffalo heifers. Tropical animal health and production, 51 (4): 859–866. https://doi.org/10.1007/s11250-018-1766-5.
  63. Hart, K. J., Jones, H. G., Waddams, K. E., Worgan, H. J., Zweifel, B., and Newbold, C.J. (2019). An Essential Oil Blend Decreases Methane Emissions and Increases Milk Yield in Dairy Cows. Open Journal of Animal Sciences, 9: 259-267. https://doi.org/10.4236/ojas.2019.93022.
  64. He, Z. X., Yang, L.Y., Yang, W. Z., Beauchemin, K. A., Tang, S. X., Huang, J. Y., and Tan, Z. L. (2015). Efficacy of exogenous xylanases for improving in vitro fermentation of forages. The Journal of Agricultural Science, 153 (3): 538-553. doi:10.1017/S0021859614000860.
  65. Hernández, J., Benedito, J. L., Abuelo, A., and Castillo, C. (2014). Ruminal Acidosis in Feedlot: From Aetiology to Prevention. The Scientific World Journal, 1-8. https://doi.org/10.1155/2014/702572.
  66. Hernández-Sánchez, D., Cervantes-Gómez, D., Ramírez-Bribiesca, J. E., Cobos-Peralta, M., Pinto-Ruiz, R., Astigarraga, L., Gere, J. I. (2019). The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. Journal of the science of food and agriculture, 99 (3): 1073–1077. https://doi.org/10.1002/jsfa.9274.
  67. Hess, H. D., Beuret, R. A., Lotscher, M., Hindrichsen, I. K., Machmuller, A., Carulla, J. E., and Kreuzer, M. (2004). Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus Saponaria fruits and Cratylia argentea foliage. Animal Science, 79 (1): 177-189. doi:10.1017/S1357729800054643.
  68. Hobson, P. N. and Stewart, C. S. (1997). The Rumen Microbial Ecosystem, Chapman and Hall, London, UK.
  69. Holtshausen, L., Chaves, A.V., Beauchemin, K.A., McGinn, S.M., McAllister, T.A., Odongo, N.E., and Benchaar, C. (2009). Feeding saponin containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of dairy science, 92 (6): 2809–2821. https://doi.org/10.3168/jds.2008-1843.
  70. Hristov, A. N., Oh, J., Giallongo, F., Frederick, T. W., Harper, M. T., Weeks, H. L., Branco, A. F., Moate, P. J., Deighton, M. H., Williams, S. R., Kindermann, M., & Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10663–10668. https://doi.org/10.1073/pnas.1504124112.
  71. Hungate, R. E., Smith, W., Bauchop, T., Yu, I., and Rabinowitz, J. C. (1970). Formate as an intermediate in the bovine rumen fermentation, Journal of Bacteriology, vol. 102, no. 2, pp. 389–397.
  72. Ibrahim, N. A., Alimon, A.R., Yaakub, H., Samsudin, A. A., Candyrine, S. C. L., Wan Mohamed, W. N., Md Noh, A., Fuat, M. A., and Mookiah, S. (2021). Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Tropical Animal Health and Production, 53: 422. https://doi.org/10.1007/s11250-021-02863-4.
  73. Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J.G., Poulter, B., Stavert, A.R., Bergamaschi, P., Niwa, Y., Segers, A., Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources Environmental Research Letters, 15, Article 071002.
  74. Jayanegara, A., Novandri, B., Yantina, N., and Ridla, M. (2017). Use of Black Soldier Fly Larvae (Hermetia Illucens) to Substitute Soybean Meal in Ruminant Diet: An In Vitro Rumen Fermentation Study. Veterinary World, 12 (10): 1436-1446. https://doi.org/10.14202/vetworld.2017.1439-1446.
  75. Jayanegara, A., Wina, E., and Takahashi, J. (2014). Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian-Australasian journal of animal sciences, 27 (10): 1426–1435. https://doi.org/10.5713/ajas.2014.14086.
  76. Jiang, C., Dong, Q., Xin, X., Degen, A. A., and Ding, L. (2022). Effect of Chinese Herbs on Serum Biochemical Parameters, Immunity Indices, Antioxidant Capacity and Metabolomics in Early Weaned Yak Calves. Animals, 12 (17): 2228. https://doi.org/10.3390/ani12172228.
  77. Jiménez-Ocampo, R., Valencia-Salazar, S., Pinzón-Díaz, C. E., Herrera-Torres, E., Aguilar-Pérez, C. F., Arango, J., and Ku-Vera, J. C. (2019). The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants. Animals, 9 (11): 942. https://doi.org/10.3390/ani9110942.
  78. Kalaitsidis, K., Sidiropoulou, E., Tsiftsoglou, O., Mourtzinos, I., Moschakis, T., Basdagianni, Z., Vasilopoulos, S., Chatzigavriel, S., Lazari, D., and Giannenas, I. (2021). Effects of Cornus and Its Mixture with Oregano and Thyme Essential Oils on Dairy Sheep Performance and Milk, Yoghurt and Cheese Quality under Heat Stress. Animals, 11(4): 1063. doi: 10.3390/ani11041063.
  79. Kamra, D. N., Singh, R., Chaudhary, L. C., Agarwal, N., and Pathak, N. N. (2000). Soapnut as natural defaunating agent: its effect on rumen fermentation and in sacco degradability of jowar hay in buffaloes. Buffalo Journal, 16: 99-104.
  80. Kara, K., Güçlü, B. K., and O˘guz, F. K. (2014). Use of propolis and phenolic acids in ruminant nutrition. ERCİYES ÜNİVERSİTESİ VETERİNER FAKÜLTESİ DERGİSİ, 11(1): 43–53.
  81. Kara, K., Özkaya, S., Erbaş, S., and Baytok, E. (2017). Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. Journal of Applied Animal Research, 46 (1): 78-183. https://doi.org/10.1080/09712119.2017.1284073.
  82. Kataria, P, R. (2016). Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiology Research, 6 (1): 6120. https://doi.org/10.4081/mr.2015.6120.
  83. Kazemi, M. and Vatandoost, M. (2019). The effect of different levels of magnesium oxide with high purity on digestion-fermentation characteristics and methane emissions of a high-concentrate diet in the in vitro batch culture. Journal of Animal Environmental Science, 11: 51–62.
  84. Kestens, Y., Brand, A., Fournier, M., Goudreau, S., Kosatsky, T., Maloley, M., and Smargiassi, A. (2011). Modelling the variation of land surface temperature as determinant of risk of heat-related health events. International journal of health geographics, 21 (10): 7. https://doi.org/10.1186/1476-072X-10-7
  85. Khattab, M. S. A., Abd El Tawab, A. M., Hadhoud, F. I., and Shaaban, M.M. (2020). Utilizing of Celery and Thyme as Ruminal Fermentation and Digestibility Modifier and Reducing Gas Production. International Journal of Dairy Science, 15: 22-27. DOI: 10.3923/ijds.2020.22.27
  86. Khattab, M. S. A., Ebeid, H. M., Abd El Tawab, A. M., Abo El-Nor, S. A.H. and Aboamer, A. A., (2016). Effect of supplementing diet with herbal plants on ruminal fiber digestibility and gas production. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7 (6): 1093- 1097.
  87. Khattab, M. S. A., El-Zaiat, H. M., Abd El Tawab, A. M., Matloup, O. H., Morsy, A. S., Abdou, M. M., Ebeid, H. M., Attia, M. F. A., and Sallam, S. M. A. (2017). Impact of lemongrass and galangal as feed additives on performance of lactating Barki goats. International Journal of Dairy Science, 12: 184– 189. https://doi.org/10.3923/ijds.2017.184.189.
  88. Khattab, M. S. A., Hassanein, H. A. M., El‐Sherbiny, M., Sakr, A. M., Hadhoud, F. I., Shreif, E. S. A., & Abd El Tawab, A. M. (2024). Lactational performance and nutrients digestibility response of dairy buffaloes fed diets supplemented with probiotic (Streptococcus spp.) and fibrolytic enzymes. Journal of Animal Physiology and Animal Nutrition, 1–9. https://doi.org/10.1111/jpn.13890
  89. Kim, E. T., Guan, leL., Lee, S. J., Lee, S. M., Lee, S. S., Lee, I. D., Lee, S. K., and Lee, S. S. (2015). Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian-Australasian journal of animal sciences, 28 (4): 530–537. https://doi.org/10.5713/ajas.14.0692.
  90. Kim, E. T., Hwang, H. S., Lee, S. M., Lee, S. J., Lee, I. D., Lee, S. K., Oh, daS., Lim, J. H., Yoon, H. B., Jeong, H. Y., Im, S. K., and Lee, S. S. (2016). Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System. Asian-Australasian journal of animal sciences, 29 (9): 1280–1286. https://doi.org/10.5713/ajas.16.0053.
  91. Kim, H., Lee, H. G., Baek, Y. C., Lee, S., and Seo, J. (2020). The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. Journal of animal science and technology, 62 (1): 31–42. https://doi.org/10.5187/jast.2020.62.1.31.
  92. Klita, P. T., Mathison, G. W., Fenton, T. W., and Hardin, R. T. (1996). Effects of alfalfa root saponins on digestive function in sheep. Journal of animal science, 74 (5): 1144–1156. https://doi.org/10.2527/1996.7451144x.
  93. Kumari, P., Singh, P., Verma, A. K., Gaur, G. K., and Das, A. (2020). Effect of molasses based multi-nutrient herbal supplements on in vitro digestibility, serum enzymes and minerals profile in buffalo calves. The Indian Journal of Animal Sciences. 90 (2): 201–206. https://scite.ai/reports/10.56093/ijans.v90i2.98782.
  94. Lamboa, M. T., Maa H., Liua R., Daib B., Zhanga, Y., and Li, Y. (2024). Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants’ enteric methane emission. Animal (18)101134. https://doi.org/10.1016.
  95. Li Z., Fu, W., Luo, M., Chen, J., and Li, L (2022) "Calculation and scenario prediction of methane emissions from agricultural activities in China under the background of “carbon peak”. Iop Conference Series Earth and Environmental Science, 1087 (1): 012021. https://doi.org/10.1088/1755-1315/1087/1/012021.
  96. Li, P., Mehmood, I. M., and Chen, W. (2022). Effects of Polymeric Media-Coated Gynosaponin on Microbial Abundance, Rumen Fermentation Properties and Methanogenesis in Xinjiang Goats. Animals, 12 (16): 2035. https://doi.org/10.3390/ani12162035.
  97. Li, Y., Lv, J., Wang, J., Zhou, S., Zhang, G., Wei, B., Sun, Y., Lan, Y., Dou, X., and Zhang, Y. (2021). Changes in Carbohydrate Composition in Fermented Total Mixed Ration and Its Effects on in vitro Methane Production and Microbiome. Frontiers in microbiology, 12: 738334. https://doi.org/10.3389/fmicb.2021.738334.
  98. Liu, K., Wang, L., Yan T., Wang, Z., Xue, B., and Peng, Q. (2019). Relationship between the structure and composition of rumen microorganisms and the digestibility of neutral detergent fibre in goats. Asian-Australas Journal Animal Science, 32 (1): 82-91. doi: 10.5713/ajas.18.0043.
  99. Liu, Y., Ma, T., Chen, D., Zhang, N., Si, B., Deng, K., Tu, Y., and Diao, Q. (2019). Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe. Animals, 9 (1): 29. doi:10.3390/ani9010029.
  100. Lu, Q., Wu, J., Wang, M., Zhou, C., Han, X., Odongo, E. N., Tan, Z., and Tang, S. (2016). Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats. Archives of animal nutrition, 70 (3): 224–238. https://doi.org/10.1080/1745039X.2016.1163002.
  101. Luo, L., Qu, Y., Gong, W., Qin, L., Li, W., and Sun, Y. (2021). Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw. Energies, 14 (13): 3960. https://doi.org/10.3390/en14133960.
  102. Machado, L., Magnusson, M., Paul, N. A., de Nys, R., and Tomkins, N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. Public Library of Science one, 9 (1): e85289. https://doi.org/10.1371/journal.pone.0085289.
  103. Makkar, H. P., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, and F., Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212: 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018.
  104. Makmur, M., Zain, M., Sholikin, M. M., Suharlina, and Jayanegara, A. (2022). Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: A meta-analysis. Heliyon, 8 (7): e09828. https://doi.org/10.1016/j.heliyon.2022.e09828.
  105. Mamlu’atur, R., Safril, A., and Fadholi, A. (2018). Analysis of changes in daily temperature and precipitation extreme in Jakarta on period of 1986-2014. International Conference on Disaster Management, 229 (02017) 7. DOI: https://doi.org/10.1051/matecconf/201822902017.
  106. Mao, H. L., Wang, J. K., Zhou, Y. Y., and Liu, J. X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 129, (3) 56–62. https://doi.org/10.1016/j.livsci.2009.12.011.
  107. Maorong, W., Fang, M., Wenbin, Y., Yingxiang, H., Chaohua, M., Feng, W., and Yao, C. (2008). Influence of copper supplementation on nitrogen metabolism and volatile fatty acid production of mixed ruminal microbial growth in continuous culture flow-through fermentors. Chinese Agricultural Science Bulletin, 24: 19.
  108. Matloup, O. H., Abd El Tawab, A. M., Hassan, A. A., Hadhoud, F. I., Khattab, M. S. A., Khalel, M. S., Sallam, S. M. A. and Kholif, A. E. (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry and milk production. Animal Feed Science and Technology, 226: 88-97. https://doi.org/10.1016/j.anifeedsci.2017.02.012.
  109. McCauley, J. I., Labeeuw, L., Jaramillo-Madrid, A. C., Nguyen, L. N., Nghiem, L. D., Chaves, A. V., and Ralph, P. J. (2020). Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Current Pollution Reports, 6: 188–205. Doi:10.1007/s40726-020-00151-7.
  110. McGinn, S. M., Beauchemin, K. A., Coates, T., and Colombatto, D. (2004). Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of animal science, 82 (11): 3346–3356. https://doi.org/10.2527/2004.82113346x.
  111. Miller-Webster, T., Hoover, W. H., Holt, M., and Nocek, J. E. (2002). Influence of yeast culture on ruminal microbial metabolism in continuous culture. Journal of Dairy Science, 85 (8): 14. doi: 10.3168/jds.S0022-0302(02)74277-X.
  112. Miller G. A., Bowen J. M., Dewhurst R. J., Zweifel B., Spengler K., and Duthie C. A. (2023). Enteric Methane Emissions from Dairy–Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant. Animals.; 13(11):1826. https://doi.org/10.3390/ani13111826.
  113. Mohammad, S. F., and Alsahaf, E. F. H. (2022). Addition of garlic powder to the ration mixture and its effect on digestion coefficient of dry and organic matter, total gas and methane in vitro production. International Journal of Health Sciences, 6 (S4): 5908–5914. https://doi.org/10.53730/ijhs.v6nS4.946.
  114. Moosavi-Zadeh, E., Rahimi, A., Rafiee, H., Saberipour, H., and Bahadoran, R. (2023). Effects of fennel (Foeniculum vulgare) seed powder addition during early lactation on performance, milk fatty acid profile, and rumen fermentation parameters of Holstein cows. Frontiers in Animal Science, 4: 1097071. https://doi.org/10.3389/fanim.2023.1097071.
  115. Morales, R., and Ungerfeld, E. M. (2015). Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chilean Journal of Agricultural Research, 75 (2). https://scite.ai/reports/10.4067/s0718-58392015000200014.
  116. Morsy, A. S., Soltan, Y. A., El-Zaiat, H. M., Alencar, S. M., and Abdalla, A. L. (2021). Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Animal Feed Science and Technology, 273: 114834. https://doi.org/10.1016/j.anifeedsci.2021.114834.
  117. Muñoz, C., Wills, D. A., and Yan, T. (2017). Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows. Animal Production Science, 57 (4): 656–664. https://doi.org/10.1071/AN15356.
  118. Murrell, J.C. and Jetten, M.S.M. (2009), The microbial methane cycle. Environmental Microbiology Reports, 1: 279-284. https://doi.org/10.1111/j.1758-2229.2009.00089.x
  119. Mutsvangwa, T., Edwards, I., Topps, J., and Paterson, G. (1992). The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Animal Production, 55 (1): 35-40. doi:10.1017/S0003356100037247.
  120. Mwenya, B., Santoso, B., Sar, C., Gamo, Y., Kobayashi, T., Arai, I., and Takahashi, J. (2004). Effects of including 1–4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Animal Feed Science and Technology, 115: 313-326. https://doi.org/10.1016/j.anifeedsci.2004.03.007.
  121. Natel, A. S., Abdalla, A. L., de Araujo, R. C., McManus, C., Paim, T. D. P., de Abdalla Filho, A. L., Louvandini, P., and Nazato, C. (2019). Encapsulated nitrate replacing soybean meal changes in vitro ruminal fermentation and methane production in diets differing in concentrate to forage ratio. Animal science journal, 90 (10): 1350–1361. https://doi.org/10.1111/asj.13251.
  122. Newbold, C. J., de la Fuente, G., Belanche, A., Ramos-Morales, E., and McEwan, N. R. (2015). The Role of Ciliate Protozoa in the Rumen. Frontiers in microbiology, 6: 1313. https://doi.org/10.3389/fmicb.2015.01313.
  123. Nkemka, V. N., Beauchemin, K. A., and Hao, X. (2019). Treatment of feces from beef cattle fed the enteric methane inhibitor 3-nitrooxypropanol. Water science and technology, 80 (3): 437–447. https://doi.org/10.2166/wst.2019.302.
  124. Nogueira, R. G., Perna Junior, F., Pereira, A. S., Cassiano, E. C., Carvalho, R. F., and Rodrigues, P. H. (2020). Methane mitigation and ruminal fermentation changes in cows fed cottonseed and vitamin E. Scientia Agricola 77 (6): e20180247. https://doi.org/10.1590/1678-992x-2018-0247
  125. Nunes, H. P. B., Teixeira, S., Maduro Dias, C. S. A. M., and Borba, A. E. S. (2022). Alternative Forages as Roughage for Ruminant: Nutritional Characteristics and Digestibility of Six Exotic Plants in Azores Archipelago. Animals, 12 (24): 3587. https://doi.org/10.3390/ani12243587.
  126. Odongo, N. E., Or-Rashid, M. M., Kebreab, E., France, J., and McBride, B. W. (2007). Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. Journal of dairy science, 90 (4): 1851–1858. https://doi.org/10.3168/jds.2006-541.
  127. Oh, J., Harper, M., Melgar, A., Compart, D. P., and Hristov, A. N. (2019). Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows Journal of Dairy Science, 102 (7): 6065–6075. https://doi.org/10.3168/jds.2018-15753.
  128. Olagaray, K. E., Brouk, M. J., Mamedova, L. K., Sivinski, S. E., Liu, H., Robert, F., Dupuis, E., Zachut, M., and Bradford, B. J. (2019). Dietary supplementation of Scutellaria baicalensis extract during early lactation decreases milk somatic cells and increases whole lactation milk yield in dairy cattle. Public Library of Science one, 14 (1): e0210744. https://doi.org/10.1371/journal.pone.0210744.
  129. Olivares-Palma, S. M., Meale, S. J., Pereira, L. G., Machado, F. S., Carneiro, H., Lopes, F. C., Maurício, R. M., and Chaves, A. V. (2013). In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production. Asian-Australasian journal of animal sciences, 26 (8): 1102–1110. https://doi.org/10.5713/ajas.2013.13098.
  130. Onugo, T. and Onyeneke, R. (2022). Farmers’ Preference and Willingness to Pay for Climate-Smart Rice Varieties in Uzo-Uwani Local Government Area of Enugu State, Nigeria. Ekológia (Bratislava), 41 (3): 262-271. https://doi.org/10.2478/eko-2022-0027.
  131. Palangi V., Macit M., Nadaroglu H., Taghizadeh A (2022). Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment. Biomass Convers. Biorefinery. doi: 10.1007/s13399-022-02775-9.
  132. Palangi, V., and Lackner, M. (2022). Management of Enteric Methane Emissions in Ruminants Using Feed Additives: A Review. Animals, 12 (24): 3452. doi: 10.3390/ani12243452.
  133. Pandey, A. K., Das, N., Muthu, K. A., & Rao, S. (2015). Methanogens in the Environment: An Insight of Methane Yield and Impact on Global Climate Change. In International Letters of Natural Sciences (Vol. 37, pp. 51–60). AOA Academic Open Access Ltd. https://doi.org/10.56431/p-df2893
  134. Pantha, N., Acharya, J. and Adhikari, P. N. (2014). First-principles study of solid methane at high pressure. Bibechana, 12: 70-79. https://doi.org/10.3126/bibechana.v12i0.11779.
  135. Partanen, K., and Jalava, T. (2008). Effects of some organic acids and salts on microbial fermentation in the digestive tract of piglets estimated using an in vitro gas production technique. Agricultural and Food Science, 14 (4): 311. https://doi.org/10.2137/145960605775897687.
  136. Parvez, M. A. K., Saha, K., Rahman, J., Munmun, R. A., Rahman, M. A., Dey, S. K., Rahman, M. S., Islam, S., and Shariare, M. H. (2019). Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon, 5 (7): e02126. https://doi.org/10.1016/j.heliyon.2019.e02126.
  137. Patra, A. K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. Livestock Science. 155: 244– 254. doi: 10.1016/j.livsci.2013.05.023.
  138. Patra, A. K., and Saxena, J. (2009). The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition research reviews, 22 (2): 204–219. https://doi.org/10.1017/S0954422409990163.
  139. Patra, A. K., and Yu, Z. (2014). Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresource technology, 155: 129–135. https://doi.org/10.1016/j.biortech.2013.12.099.
  140. Patra, A. K., and Yu, Z. (2015). Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis. Frontiers in Microbiology, 6: 297. https://doi.org/10.3389/fmicb.2015.00297.
  141. Patra, A., Park, T., Kim, M., and Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of animal science and biotechnology, 8: 13. https://doi.org/10.1186/s40104-017-0145-9.
  142. Patra, S., Mishra, S. S., Behera, M., Sahoo, R. S., Gouda, S., Palei, S. S., and Mahalik, G. (2020). Buddleja asiatica Lour. Derived Phytochemicals against Staphylococcus aureus Causing Skin Diseases. Journal of Pharmaceutical Research International, 32 (8): 117–120. doi: 10.9734/jpri/2020/v32i830529.
  143. Patterson, J. A. and Hespell, R. B. (1979). Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Current Microbiology, vol. 3, no. 2, pp. 79–83.
  144. Pedraza-Hernandez, J., Elghandour, M.M.M.Y., Khusro, A., Camacho-Diaz, L. M., Vallejo, L. H., Barbabosa-Pliego, A., and Salem, A. Z. M. (2019). Mitigation of ruminal gases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. Journal of Cleaner Production, 234: 779–786. https://doi.org/10.1016/j.jclepro.2019.06.126.
  145. Pen, B., Takaura, K., Yamaguchi, S., Asa, R., and Takahashi, J. (2007). Effects of Yucca schidigera and Quillaja saponaria with or without _ 1–4 galactooligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Animal Feed Science Technology, 138 (1): 75–88. https://doi.org/10.1016/j.anifeedsci.2006.11.018.
  146. Pérez-Barbería, F. J., Mayes, R. W., Giráldez, J., and Sánchez-Pérez, D. (2020). Ericaceous species reduce methane emissions in sheep and red deer: Respiration chamber measurements and predictions at the scale of European heathlands. The Science of the total environment, 714: 136738. https://doi.org/10.1016/j.scitotenv.2020.136738.
  147. Ponte, J. M. S., Seca, A. M. L., and Barreto, M. D. C. (2022). Asparagopsis Genus: What We Really Know About Its Biological Activities and Chemical Composition. Molecules, 27 (6): 1787. https://doi.org/10.3390/molecules27061787.
  148. Popescu, I. D., Codrici, E., Mihai, S., Luntraru, C. M., Neagu, M., and Tanase, C. (2021). In vitro assessment of the cytotoxicity and anti-inflammatory properties of a novel dietary supplement. Experimental and therapeutic medicine, 22 (4): 1170. https://doi.org/10.3892/etm.2021.10604.
  149. Prasad, R. R., Dean, U. R. M., and Alungo, B. (2022). Climate Change Impacts on Livestock Production and Possible Adaptation and Mitigation Strategies in Developing Countries: A Review. Journal of Agricultural Science, 14 (3): 240. https://doi.org/10.5539/jas.v14n3p240.
  150. Prathap, P., Chauhan, S. S., Leury, B. J., Cottrell, J. J., and Dunshea, F. R. (2021). Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation. Sustainability, 13 (11): 6081. https://doi.org/10.3390/su13116081.
  151. Prihartini, I., Ari, M., Atoum, M.F., Ismail, A.S., and Hendraningsih, L. (2021). The Effect of Supplementation Lignolitic Probiotic in Rice Straw for Digestibility and Efficiency of Microbial Protein Synthesis using In Vitro Residual Gas Production. Sarhad Journal of Agriculture, 37(1):136-143. https://dx.doi.org/10.17582/journal.sja/2021.37.s1. 136.143
  152. Qu, X., Raza, S. H. A., Zhao, Y., Deng, J., Ma, J., Wang, J., Alkhorayef, N., Alkhalil, S. S., Pant, S. D., Lei, H., and Zan, L. (2023). Effect of Tea Saponins on Rumen Microbiota and Rumen Function in Qinchuan Beef Cattle. Microorganisms, 11(2): 374. https://doi.org/10.3390/micro organisms 11020374.
  153. Rebelo, L. R., Luna, I. C., Messana, J. D., Araujo, R. C., Simioni, T. A., Granja-Salcedo, Y. T., Vitoa, E. S., Lee, C., Teixeira, I. A. M. A., and Rooke, J. A. (2019). Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Animal Feed Science and Technology, 257: 114293. https://doi.org/10.1016/j.anifeedsci.2019.114293.
  154. Rivaroli, D. C., Prado, R. M., Ornaghi, M. G., Mottin, C., Ramos, T. R., Barrado, A. G., Jorge, A. M., and Prado, I. N. (2017). Essential Oils in the Diet of Crossbred (½ Angus vs. ½ Nellore) Bulls Finished in Feedlot on Animal Performance, Feed Efficiency and Carcass Characteristics. The Journal of Agricultural Science, 9 (10): 205. https://doi.org/10.5539/jas.v9n10p205.
  155. Rosa, L., and Gabrielli, P. (2023). Achieving net-zero emissions in agriculture: a review. Environmental Research Letters, 18: 063002. DOI 10.1088/1748-9326/acd5e8
  156. Salem, A. Z. M., Ammar, H., Lopez, S., Gohar, Y. M., and González, J. S. (2011). Sensitivity of ruminal bacteria isolates of sheep, cattle and buffalo to some heavy metals. Animal Feed Science Technology, 163, 143–149. DOI: 10.1016/j.anifeedsci.2010.10.017.
  157. Sankar, C. R. H., Rajan, N. S., Raida, Sreya, V. K., Suresh, S., Harisankaran, P. S., Sheela, P., Parn, M., Priya, R., Yatoo, M. I., Chopra, H., Emran, T. B., Dey, A., Dhama, K., and Chandran, D. (2022). Potential effects of essential oils in safeguarding the health and enhancing production performance of livestock animals: The current scientific understanding. Journal of Experimental Biology and Agricultural Sciences, 10 (6): 1222–1240. https://doi.org/10.18006/2022.10(6).1222.1240.
  158. Santos, M. S. D., Wancura, J. H. C., Oro, C. E. D., Dallago, R. M., and Tres, M. V. (2022). Opportunities and Challenges of Plant Bioactive Compounds for Food and Agricultural-Related Areas. Phyton-International Journal of Experimental Botany, 91 (6): 1105-1127. DOI: 10.32604/phyton.2022.020913.
  159. Santos, N. W., Zeoula, L. M., Yoshimura, E. H., Machado, E., Macheboeuf, D., and Cornu, A. (2016). Brazilian propolis extract used as an additive to decrease methane emissions from the rumen microbial population in vitro. Tropical animal health and production, 48 (5): 1051–1056. https://doi.org/10.1007/s11250-016-1062-1.
  160. Selim, N. A. H., Abd El Tawab, A. M., Kholif, A. M., Elsayed, H. M., El-Bordeny, N. E. and Farahat, E. S. A. (2021). Impact of the Essential Oils of Marjoram or Basil Dietary Supplementation on Degradability, Ruminal Fermentation and Total Gas Production In-Vitro. Egyptian Journal Nutrition and Feeds, 24 (1): 85-93. DOI: 10.21608/EJNF.2021.170311.
  161. Sharp, R., Ziemer, C. J., Stern, M. D., and Stahl, D. A. (1998). “Taxonspecific associations between protozoal and methanogen populations in the rumen and a model rumen system,” FEMS Microbiology Ecology, vol. 26, no. 1, pp. 71–78.
  162. Shibata, M., and Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal science journal, 81 (1): 2–10. https://doi.org/10.1111/j.1740-0929.2009.00687.x.
  163. Sinz, S., Marquardt, S., Soliva, C. R., Braun, U., Liesegang, A., and Kreuzer, M. (2019). Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-Australasian journal of animal sciences, 32 (7): 966–976. https://doi.org/10.5713/ajas.18.0665.
  164. Sliwiński, B. J., Kreuzer, M., Wettstein, H. R., and Machmüller, A. (2002). Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Archiv fur Tierernahrung, 56 (6): 379–392. https://doi.org/10.1080/00039420215633.
  165. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L. (1988). Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Applied and environmental microbiology, 54 (5): 1079–1084. https://doi.org/10.1128/aem.54.5.1079-1084.1988.
  166. Su, M., Wang, H., Shi, H., Li, Q., Zhang, Y., Li, T., and Ma, Y. (2022). Yeast Products Mediated Ruminal Subenvironmental Microbiota, and Abnormal Metabolites and Digestive Enzymes Regulated Rumen Fermentation Function in Sheep. Animals, 12 (22): 3221. https://doi.org/10.3390/ani12223221.
  167. Suharja, A. A., Henriksson, A., and Liu, S. (2012). Impact of Saccharomyces Cerevisiaeon Viability of Probiotic Lactobacillus Rhamnosusin Fermented Milk under Ambient Conditions. Journal of Food Processing and Preservation, 38 (1): 326-337. https://doi.org/10.1111/j.1745-4549.2012.00780.x.
  168. Sutaryo, S., Adiwinarti, R., Ward, A. J., Kurihara, M., and Purnomoadi, A. (2019). Effect of different feeding management on the respiratory methane emission and feces-derived methane yield of goat. Journal of advanced veterinary and animal research, 6 (4): 431–437. https://doi.org/10.5455/javar.2019.f364.
  169. Takahashi, J. (2014). Prophylactic Modulation of Methane and Nitrous Oxide Emitted from Ruminants Livestock for Sustainable Animal Agriculture. Media Peternakan, 37 (3): 206-214. https://doi.org/10.5398/medpet.2014.37.3.206.
  170. Tang, S.X., Zou, Y., Wang, M., Salem, A.Z., Odongo, N.E., Zhou, C.S., Han, X.F., Tan, Z., Zhang, M., Fu, Y., Huang, S., He, Z.X., and Kang, J.H. (2013). Effects of Exogenous Cellulase Source on In Vitro Fermentation Characteristics and Methane Production of Crop Straws and Grasses. Animal Nutrition and Feed Technology, 13: 489-505. https://api.semanticscholar.org/CorpusID:55281388.
  171. Teixeira, A. D., Júnior, G. O., Velasco, F. O., Júnior, W.G., Rodriguez, N.M., Rodrigues, J.A., McAllister, T.A., and Gonçalves, L.C. (2014). Intake and digestibility of sorghum (Sorghum bicolor, L. Moench) silages with different tannin contents in sheep. Revista Brasileira De Zootecnia, 43: 14-19. DOI: 10.1590/S1516-35982014000100003.
  172. Tellier, Y., Pierangelo, C., Wirth, M., Gibert, F., and Marnas, F. (2018). Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN. Atmospheric Measurement Techniques, 11 (10): 5865-5884. https://doi.org/10.5194/amt-11-5865-2018
  173. Tokura, M., Ushida, K., Miyazaki, K., and Kojima, Y. (1997) Methanogens associated with rumen ciliates. FEMS Microbiology Ecology, 22 (2): 137–143. https://doi.org/10.1111/j.1574-6941.1997.tb00365.x.
  174. Troy, S. M., Duthie, C. A., Hyslop, J. J., Roehe, R., Ross, D. W., Wallace, R. J., Waterhouse, A., and Rooke, J. A. (2015). Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets. Journal of animal science, 93 (4): 1815–1823. https://doi.org/10.2527/jas.2014-8688.
  175. Ugbogu, E. A., Elghandour, M. M. M. Y., Ikpeazu, V. O., Buendía, G. R., Molina, O. M., Arunsi, U. O., Emmanuel, O., and Salem, A. Z. (2019). The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. Journal of cleaner production, 213: 915-925. doi: 10.1016/j.jclepro.2018.12.233.
  176. van Zijderveld, S. M., Dijkstra, J., Perdok, H. B., Newbold, J. R., and Gerrits, W. J. (2011). Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows. Journal of dairy science, 94 (6): 3094–3104. https://doi.org/10.3168/jds.2010-4042.
  177. Vargas, J. E., Andrés, S., López-Ferreras, L., Snelling, T. J., Yáñez-Ruíz, D. R., García-Estrada, C., and López, S. (2020). Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific reports, 10 (1): 1613. https://doi.org/10.1038/s41598-020-58401-z.
  178. Walsh, S.E., Maillard, J.-Y., Russell, A.D., Catrenich, C.E., Charbonneau, D.L., Bartolo, R. G., 2003. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol. 94, 240–247. https://doi.org/10.1046/j.1365-2672.2003.01825.x.
  179. Wanapat, M., Cherdthong, A. and Phesatcha, K. (2021). Mitragyna speciosa Korth Leaves Supplementation on Feed Utilization, Rumen Fermentation Efficiency, Microbial Population, and Methane Production In Vitro. Fermentation, 8 (1): 8. https://doi.org/10.3390/fermentation8010008.
  180. Wang, C. J., Wang, S. P., and Zhou, H. (2009). Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Animal Feed Science and Technology, 148: 157–166. https://doi.org/10.1016/j.anifeedsci.2008.03.008.
  181. Wang, C., Ye, L., Jin, J., Chen, H., Xu, X., and Zhu, L. (2017). Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2,4-dichloronitrobenzene. Scientific Reports, 7: 10319. https://doi.org/10.1038/s41598-017-10572-y.
  182. Wang, L., and Xue, B. (2015). Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats. Asian-Australasian Journal of Animal Sciences, 29: 204-210. https://scite.ai/reports/10.5713/ajas.15.0094.
  183. Wang, R., Si, H. B., Wang, M., Lin, B., Deng, J. P., Tan, L. W., and Tan, Z. L. (2019). Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures. Animal Feed Science and Technology, 252: 74–82. https://doi.org/10.1016/j.anifeedsci.2019.04.009.
  184. Wani, J. M., Sarda, V. K., and Jain, S. (2017). Assessment of Trends and Variability of Rainfall and Temperature for the District of Mandi in Himachal Pradesh, India Slovak Journal of Civil Engineering, 25 (3): 15-22. https://doi.org/10.1515/sjce-2017-0014.
  185. Wann, C., Wanapat, M., Mapato, C., Ampapon, T., and Huang, B. Z. (2019). Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle. Asian-Australasian journal of animal sciences, 32 (8): 1153–1160. https://doi.org/10.5713/ajas.18.0703.
  186. Wei, Q., Li, B., Wang, J., Zhao, B., and Yang, P. (2021). Impact of Residual Water Vapor on the Simultaneous Measurements of Trace CH4 and N2O in Air with Cavity Ring-Down Spectroscopy. Atmosphere. 12 (2): 221. https://doi.org/10.3390/atmos12020221.
  187. Wina, E., Muetzel, S., Hoffmann, E., Makkar, H. P. S., and Becker, K. (2005). Saponins containing methanol extract of Sapindus rarak affectmicrobial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology, 121: 159–174. https://doi.org/10.1016/j.anifeedsci.2005.02.016.
  188. Yang, C., Rooke, J. A., Cabeza, I., and Wallace, R. J. (2016). Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock. Frontiers in microbiology, 7: 132. https://doi.org/10.3389/fmicb.2016.00132.
  189. Yang, F., Andersen, D. S., Trabue, S., Kent, A. D., Pepple, L. M., Gates, R. S., and Adina S. H. (2021). Microbial assemblages and methanogenesis pathways impact methane production and foaming in manure deep-pit storages. Public Library of Science One, 16 (8): e0254730. Available at: https://doi.org/10.1371/journal.pone.0254730.
  190. Yanza Y. R., Irawan A., Jayanegara A., Ramadhani F., Respati A. N., Fitri A., Hidayat C., Niderkorn V., Cieslak A., and Szumacher-Strabel M. (2024). Saponin Extracts Utilization as Dietary Additive in Ruminant Nutrition: A Meta-Analysis of In Vivo Studies. Animals. 14(8):1231. https://doi.org/10.3390/ani14081231.
  191. Yao, K., Jiang, L., Liu, J., Wang, D., Liu, H., and Ren, D. (2021). Effect Of Yellow Wine Lees Supplementation on Milk Antioxidant Capacity and Hematological Parameters in Lactating Cows Under Heat Stress. Animals, 9 (11): 2643. https://doi.org/10.3390/ani11092643
  192. Yu, J., Cai, L., Zhang, J., Yang, A., Wang, Y., Zhang, L., Guan, L. L., and Qi, D. (2020). Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro. Microorganisms, 8 (8): 1160. https://doi.org/10.3390/microorganisms8081160.
  193. Yuan, C., Wang, S., Gebeyew, K., Yang, X., Tang, S., Zhou, C., Khan, N. A., Tan, Z., and Liu, Y. (2023). A low-carbon high inulin diet improves intestinal mucosal barrier function and immunity against infectious diseases in goats. Frontiers in veterinary science, 9: 1098651. https://doi.org/10.3389/fvets.2022.1098651.
  194. Yuliana, P., Laconi, E. B., Jayanegara, A., Achmadi, S. S., and Samsudin, A. A. (2019). Effect of napier grass supplemented with Gliricidia sepium, Sapindus rarak or Hibiscus rosa-sinensis on in vitro rumen fermentation profiles and methanogenesis. Journal of the Indonesian Tropical Animal Agriculture., 44 (2): 167. https://doi.org/10.14710/jitaa.44.2.167-176.
  195. Zhang, R., Liu, J., Jiang, L., Wang, X. F., and Mao, S. (2022). The Remodeling Effects of High-concentrate Diets on Microbial Composition and Function in The Hindgut of Dairy Cows. Frontiers in Nutrition, 1 (8): 809406. https://doi.org/10.3389/fnut.2021.809406.
  196. Zhang, Z., Shen, W., Xue, J., Liu, Y., Liu, Y., Yan, P., Liu, J., and Tang, J. (2018). Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale research letters, 13 (1): 54. https://doi.org/10.1186/s11671-018-2450-4.
  197. Zhao, M. D., Di, L. F., Tang, Z. Y., Jiang, W., and Li, C. Y. (2019). Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. Asian-Australasian journal of animal sciences, 32 (10): 1540– 1547. https://doi.org/10.5713/ajas.18.0901.
  198. Zhenming, Z., Meng, Q., and Yu, Z. (2011). Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Applied and Environmental Microbiology, 77: 2634. doi: 10.1128/AEM.02779-10.
  199. Ziauddin, Z. (2022). Selenium, Zinc and Probiotics Ameliorate the Effect of High Ambient Temperature: A Review. International Journal of Current Science Research and Review, 05 (02): 520-525. https://doi.org/10.47191/ijcsrr/v5-i2-25.
DOI: https://doi.org/10.2478/azibna-2024-0017 | Journal eISSN: 2344-4592 | Journal ISSN: 1016-4855
Language: English
Page range: 90 - 125
Published on: Dec 22, 2024
Published by: National Institute for Research-Development in Biology and Animal Nutrition
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Ahmed M. Abd El Tawab, Qinhua Liu, Gang Xu, Xuefeng Han, published by National Institute for Research-Development in Biology and Animal Nutrition
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.