Have a personal or library account? Click to login
Antimicrobial potential of polyphenols obtained from agro-industrial by-products Cover

Antimicrobial potential of polyphenols obtained from agro-industrial by-products

Open Access
|Oct 2023

References

  1. Almaraz-Sánchez, I., Amaro-Reyes, A., Acosta-Gallegos, J. A., Mendoza-Sánchez, M., & Figoli, A. (2022). Processing Agroindustry By-Products for Obtaining Value-Added Products and Reducing Environmental Impact. Journal of Chemistry, 2022, 1-13.
  2. Amarowicz, R. and Fornal, J. (1995). Phenolic acids in rapeseed. Zeszyty Problemowe Postępów Nauk Rolniczych, 427, 99-105.
  3. Bae, I. S., & Kim, S. H. (2020). Sinapic Acid Promotes Browning of 3T3-L1 Adipocytes via p38 MAPK/CREB Pathway. BioMed research international, 2020, 5753623.
  4. Bhatta, T. R., Chamings, A., & Alexandersen, S. (2021). Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses, 13(8).
  5. Bouarab-Chibane, L., Forquet, V., Lanteri, P., Clement, Y., Leonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models. Front Microbiol, 10, 829.
  6. Chadni, M., Boussetta, N., Guerin, C., Lagalle, F., Zoghlami, A., Perre, P., Allais, F., Grimi, N., & Ioannou, I. (2023). Improvement of Sinapine Extraction from Mustard Seed Meal by Application of Emerging Technologies. Foods, 12(3).
  7. Cheng Yifei, Zeng Honghu, Yu Yang, Wang Dali, Sun Haoyu, Lin Zhifen, Mo Lingyun. (2018). Study on the Hormesis of Sulfonamides on Different Gram-negative Bacteria. Asian Journal of Ecotoxicology, (2), 57-65.
  8. Correddu, F., Lunesu, M. F., Buffa, G., Atzori, A. S., Nudda, A., Battacone, G., & Pulina, G. (2020). Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals (Basel), 10(1).
  9. Czech, A., Nowakowicz-Debek, B., Lukaszewicz, M., Florek, M., Ossowski, M., & Wlazlo, L. (2022). Effect of fermented rapeseed meal in the mixture for growing pigs on the gastrointestinal tract, antioxidant status, and immune response. Sci Rep, 12(1), 15764.
  10. Engels, C., Schieber, A., & Gänzle, M. G. (2012). Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity. European Food Research and Technology, 234(3), 535-542.
  11. Etxeberria, U., Fernandez-Quintela, A., Milagro, F. I., Aguirre, L., Martinez, J. A., & Portillo, M. P. (2013). Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem, 61(40), 9517-9533.
  12. European Commission. (2005, December 22). Ban on antibiotics as growth promoters in animal feed enters into effect. IP/05/1687.
  13. European Medicines Agency Science Medicine Health. (2017, June 26). EMA/394961/2017 Veterinary Medicines Division. www.ema.europa.eu/en/medicines/veterinary/referrals/zinc-oxide.
  14. Fairbrother, J. M., Nadeau, E., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev, 6(1), 17-39.
  15. Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3, 1-6.
  16. Grosu, I. A., Pistol, G. C., Taranu, I., & Marin, D. E. (2019). The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning. Toxins (Basel), 11(1).
  17. Huang, H., Li, Y., Gui, F., Yang, P., Zhang, J., Li, W., Zhong, C., & Cao, L. (2023). Optimizing the purification process of polyphenols of sea buckthorn seed and its potential freshness effect. LWT, 173, 114380.
  18. Krishna, N. A. V., Nadeem, M. D., Saradhi, M. P., Mahendran, B., & Bharathi, S. (2014). Cumulative activity of the p-coumaric acid and syringaldehyde for antimicrobial activity of different microbial strains. Euro. J. Exp. Biol, 4, 40-43.
  19. Li, K., Guan, G., Zhu, J., Wu, H., & Sun, Q. (2019). Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control, 96, 234-243.
  20. Lipiński, K., Mazur, M., Antoszkiewicz, Z., & Purwin, C. (2017). Polyphenols in Monogastric Nutrition – A Review. Annals of Animal Science, 17(1), 41-58.
  21. Migliore, L., Rotini, A., & Thaller, M. C. (2013). Low Doses of Tetracycline Trigger the E. coli Growth: A Case of Hormetic Response. Dose Response, 11(4), 550-557.
  22. Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., & Rath, M. (2016). Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients, 8(9).
  23. Pistol, G. C., Bulgaru, C. V., Marin, D. E., Oancea, A. G., & Taranu, I. (2021). Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods, 10(3).
  24. Phung, L. T., Kitwetcharoen, H., Chamnipa, N., Boonchot, N., Thanonkeo, S., Tippayawat, P., Klanrit, P., Yamada, M., & Thanonkeo, P. (2023). Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Scientific reports, 13(1), 7859.
  25. Plaipetch, P., & Yakupitiyage, A. (2013). Effect of replacing soybean meal with yeast-fermented canola meal on growth and nutrient retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquaculture Research, n/a-n/a.
  26. Ray, S. D., Farris, F. F., & Hartmann, A. C. (2014). Hormesis. In Encyclopedia of Toxicology (pp. 944-948).
  27. Roselli, Marianna; Finamore, Alberto; Garaguso, Ivana; Britti, Maria Serena; Mengheri, Elena (2003). Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia coli. The Journal of Nutrition, 133(12), 4077–4082.
  28. Sandulachi, E., Macari, A., Cojocari, D., Balan, G., Popa, S., Turculeț, N., Ghendov-Moşanu, A. and Sturza, R. (2022). Antimicrobial properties of sea buckthorn grown in the Republic of Moldova. Journal of Engineering Sciences, (1), 164-175.
  29. Smirnova, G. V., Samoylova, Z. Y., Muzyka, N. G., & Oktyabrsky, O. N. (2009). Influence of polyphenols on Escherichia coli resistance to oxidative stress. Free Radic Biol Med, 46(6), 759-768.
  30. Tabasco, R., Garcia-Cayuela, T., Pelaez, C., & Requena, T. (2009). Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol, 132(2-3), 109-116.
  31. Tabasco, R., Sanchez-Patan, F., Monagas, M., Bartolome, B., Victoria Moreno-Arribas, M., Pelaez, C., & Requena, T. (2011). Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol, 28(7), 1345-1352.
  32. Taranu, I., Habeanu, M., Gras, M. A., Pistol, G. C., Lefter, N., Palade, M., Ropota, M., Sanda Chedea, V., & Marin, D. E. (2018). Assessment of the effect of grape seed cake inclusion in the diet of healthy fattening-finishing pigs. J Anim Physiol Anim Nutr (Berl), 102(1), e30-e42.
  33. Taranu, I., Pistol, G. C., Anghel, A. C., Marin, D., & Bulgaru, C. (2022). Yeast-Fermented Rapeseed Meal Extract Is Able to Reduce Inflammation and Oxidative Stress Caused by Escherichia coli Lipopolysaccharides and to Replace ZnO in Caco-2/HTX29 Co-Culture Cells. Int J Mol Sci, 23(19).
  34. Verhelst, R., Schroyen, M., Buys, N., & Niewold, T. (2014). Dietary polyphenols reduce diarrhea in enterotoxigenic Escherichia coli (ETEC) infected post-weaning piglets. Livestock Science, 160, 138-140.
  35. Vlassa, M., Filip, M., Taranu, I., Marin, D., Untea, A. E., Ropota, M., Dragomir, C., & Saracila, M. (2022). The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods, 11(19).
  36. Wang, M., Yang, C., Francois, J. M., Wan, X., Deng, Q., Feng, D., Deng, S., Chen, S., Huang, F., Chen, W., & Gong, Y. (2021). A Two-step Strategy for High-Value-Added Utilization of Rapeseed Meal by Concurrent Improvement of Phenolic Extraction and Protein Conversion for Microbial Iturin A Production. Front Bioeng Biotechnol, 9, 735714.
  37. Wang, Z., Zhao, F., Wei, P., Chai, X., Hou, G., & Meng, Q. (2022). Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front Nutr, 9, 1036295.
  38. Xue, Z., Feng, W., Cao, J., Cao, D., & Jiang, W. (2009). Antioxidant Activity and Total Phenolic Contents in Peel and Pulp of Chinese Jujube (Ziziphus jujuba Mill.) Fruits. Journal of Food Biochemistry, 33(5), 613-629.
  39. Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front Vet Sci, 8, 628258.
DOI: https://doi.org/10.2478/azibna-2023-0017 | Journal eISSN: 2344-4592 | Journal ISSN: 1016-4855
Language: English
Page range: 96 - 115
Published on: Oct 21, 2023
Published by: National Institute for Research-Development in Biology and Animal Nutrition
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Andrei Cristian Anghel, Ionelia Țăranu, published by National Institute for Research-Development in Biology and Animal Nutrition
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.